
M5: Mastering Page Migration and Memory
Management for CXL-based Tiered Memory Systems

Yan Sun
University of Illinois

Urbana, U.S.A.
yans3@illinois.edu

Jongyul Kim
University of Illinois

Urbana, U.S.A.
jyk@illinois.edu

Zeduo Yu
University of Illinois

Urbana, U.S.A.
zeduoyu2@illinois.edu

Jiyuan Zhang
University of Illinois

Urbana, U.S.A.
jiyuanz3@illinois.edu

Siyuan Chai
University of Illinois

Urbana, U.S.A.
siyuanc3@illinois.edu

Michael Jaemin Kim
Seoul National University
Seoul, Republic of Korea

michael604@scale.snu.ac.kr

Hwayong Nam
Seoul National University
Seoul, Republic of Korea

hwayong.nam@scale.snu.ac.kr

Jaehyun Park
Seoul National University
Seoul, Republic of Korea
jhpark@scale.snu.ac.kr

Eojin Na
Seoul National University
Seoul, Republic of Korea
eojin.na@scale.snu.ac.kr

Yifan Yuan
Intel Labs

Hillsboro, U.S.A.
yifan.yuan@intel.com

Ren Wang
Intel Labs

Hillsboro, U.S.A.
ren.wang@intel.com

Jung Ho Ahn
Seoul National University
Seoul, Republic of Korea

gajh@snu.ac.kr

Tianyin Xu
University of Illinois

Urbana, U.S.A.
tyxu@illinois.edu

Nam Sung Kim
University of Illinois

Urbana, U.S.A.
nskim@illinois.edu

Abstract
CXL has emerged as a promising memory interface that can
cost-effectively expand the capacity and bandwidth of amem-
ory system, complementing the traditional DDR interface.
However, CXL DRAM presents 2–3× longer access latency
than DDR DRAM, forming a tiered-memory system that de-
mands an effective and efficient page-migration solution. Al-
though many page-migration solutions have been proposed
for past tiered-memory systems, they have achieved limited
success. To tackle the challenge of managing tiered-memory
systems, this work first presents a CXL-driven profiling so-
lution to precisely and transparently count the number of
accesses to every 4KB page and 64B word in CXL DRAM.
Second, using the profiling solution, this work uncovers that
(1) widely used CPU-driven page-migration solutions often
identify warm pages as hot pages, and (2) certain applica-
tions have sparse hot pages, where only a small percentage
of words in each of these pages are frequently accessed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3711999

Besides, this work demonstrates that the performance over-
head of identifying hot pages is sometimes high enough to
degrade application performance. Lastly, this work presents
M5, a platform designed to facilitate the development of
effective CXL-driven page-migration solutions, providing
hardware-based hot-page and hot-word trackers in the CXL
controller. On average, M5 can identify 47% hotter pages
and offer 14% higher performance than the best CPU-driven
page-migration solution, even with a simple policy.

CCS Concepts: • Hardware→Memory and dense stor-
age; Hardware accelerators; • Computer systems orga-
nization→ Architectures.

Keywords: Compute Express Link, DRAM, Tiered Memory,
Near Memory Processing, Page Migration

ACM Reference Format:
Yan Sun, Jongyul Kim, Zeduo Yu, Jiyuan Zhang, SiyuanChai,Michael
Jaemin Kim, Hwayong Nam, Jaehyun Park, Eojin Na, Yifan Yuan,
Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. 2025.
M5: Mastering Page Migration and Memory Management for CXL-
based Tiered Memory Systems. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’25), March
30–April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3676641.3711999

1 Introduction
As datacenter applications continue to evolve, they demand
DRAM with larger capacity and higher bandwidth. How-
ever, it has become more challenging to meet these demands

604

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://doi.org/10.1145/3676641.3711999
https://doi.org/10.1145/3676641.3711999
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676641.3711999&domain=pdf&date_stamp=2025-03-30

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

cost-efficiently, as the current DRAM and its DDR inter-
face technologies have almost reached their scaling limits.
Consequently, it has taken 4 and 7 years to double the per-
chip capacity of mainstream DRAM (from 8Gb to 16Gb [70])
and the bandwidth of the DDR interface (from 19.2GB/s to
38.4GB/s [64]), respectively. In such a case, the number of
memory channels determines both the capacity and band-
width of a memory system. Yet, a large number of pins is
required for each memory channel (e.g., 288 pins for the
DDR4/5 interfaces), limiting the number of memory chan-
nels in a system under various physical constraints imposed
by the CPU package and the PCB board.

Compute Express Link (CXL) [58] built on PCIe has emerged
as a promising alternative memory interface, addressing the
aforementioned challenges. For example, CXL built on PCIe
5.0 can offer the same bandwidth as DDR5 with 3× fewer
pins [62, 66]. Furthermore, the host CPU can access CXL
memory with load/store instructions, as the CXL protocol
can expose the CXL memory as memory in a remote NUMA
node. Nonetheless, a serial interface and the CXL protocol
together increase the latency of accessing CXL DRAM by
140–170𝑛𝑠 compared to DDR DRAM [62]. Therefore, CXL
DRAM is considered slowmemory, forming a tiered-memory
system when used alongside fast memory (e.g., DDR DRAM).
Tominimize the performance penalty of frequently accessing
CXL DRAM, a page-migration solution is essential.
A page-migration solution periodically determines fre-

quently accessed (hot) pages in slow memory and then mi-
grates them to fast memory. It has been extensively stud-
ied whenever a new memory architecture and/or technol-
ogy presenting non-uniform memory access latency has
emerged. For instance, a NUMA system experiences a perfor-
mance penalty whenever a CPU accesses DRAM in a remote
NUMA node. To reduce the performance penalty, a page-
migration solution, i.e., Automatic NUMA Balancing (ANB),
was introduced, exploiting hinting page faults to identify hot
pages [5]. Later, other page-migration solutions have been
proposed to efficiently use emerging memory, such as Intel
3D XPoint, which presents 3× longer access latency than
DDR4 DRAM [31, 48, 53, 68, 69].

These page-migration solutions are based on causing hint-
ing page faults (e.g., TPP [42]), scanning Page-Table Entries
(PTEs) (e.g., DAMON [48]), or sampling accessed memory ad-
dresses (e.g., Memtis [31]). However, it has been technically
challenging to precisely determine whether pages identified
by them are truly hot. Furthermore, a large body of work
has suggested that a significant percentage of 64B words in
each 4KB page are not accessed at all for a certain class of
applications (e.g., [2, 8, 52]). We refer to such a page as a
sparse page in this work. When sparse pages are migrated,
they are first brought into the cache hierarchy, which causes
cache pollution. Therefore, it may be less desirable to migrate
sparse pages, depending on the characteristics of applica-
tions. Nonetheless, the CPU-driven page-migration solutions

lack the capability of distinguishing between sparse and
dense pages.

The rise of CXLmemory has brought renewed attention to
the importance of effective page-migration solutions. Unlike
the previous memory technologies, including DDR DRAM
and 3D XPoint, CXL employs a third-party controller. This
offers unprecedented flexibility, facilitating easy integration
of hardware functions between the host CPU and CXL mem-
ory. Exploiting such flexibility of CXL memory, this work
makes the following contributions.
Contribution 1: A CXL-driven hot-page and hot-word
profiling solution (§3). To assist with the development
of page-migration solutions for CXL-based tiered-memory
systems, we present Page Access Counter (PAC) and Word
Access Counter (WAC), implemented in an FPGA-based CXL
device. They exploit the near-memory processing capability
of the CXL controller to count the number of accesses to
every 4KB page and 64B word, respectively, in CXL DRAM.
As such, they can provide a more precise and transparent
profiling capability than other methodologies, such as dy-
namic binary instrumentation, simulation/emulation, and
address sampling.
Contribution 2: CPU-driven page-migration solutions
considered harmful (§4). Using PAC, we demonstrate that
two representative CPU-driven page-migration solutions
(ANB and DAMON) often identify warm pages in popular
memory-intensive applications. Specifically, the number of
accesses to hot pages identified by ANB and DAMON is only
21% and 29%, respectively, of the number of accesses to the
same number of hot pages determined by PAC. Besides, using
WAC, we confirm that these page-migration solutions often
migrate sparse pages. For instance, we discover that only 16
or fewer words out of 64 words in a page are accessed in 86%
of the pages allocated by Redis [54]. Meanwhile, we observe
that the performance overhead of identifying hot pages and
migrating them is high. That is, unless true hot, dense pages
are identified and migrated, application performance may
degrade instead. This necessitates a page-migration solution
that can identify true hot pages and distinguish between
dense and sparse hot pages, while minimizing the perfor-
mance overhead of identifying them.
Contribution 3: A platform for developing CXL-driven
page-migration solutions (§5). To address the shortcom-
ings of the CPU-driven page-migration solutions, we ad-
vocate for a CXL-driven page-migration solution with the
following capabilities. First, it should delegate CPU-intensive
operations for identifying hot pages to the CXL controller.
Second, it should eschew the migration of sparse pages if
necessary. In this work, we provide such capabilities with M5
(Mastering Page Migration and Memory Management for
CXL-based Tiered Memory Systems), a platform designed
to facilitate the development of such a CXL-driven page-
migration solution. M5 consists of the following two key
components: (1) Hot-Page Tracker (HPT) and Hot-Word

605

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Tracker (HWT) and (2) M5-manager. HPT and HWT cost-
effectively track the top-𝐾 hot pages and hot words, respec-
tively. M5-manager provides users with software interfaces
for the synergistic use of HPT and HWT, empowering them
to develop diverse policies for intelligently identifying pages
to migrate. On average, M5 can identify 47% hotter pages
and offer 20% and 14% higher performance than ANB and
DAMON, respectively, for memory-intensive applications,
even with a simple policy.

2 Background
2.1 CPU-driven Page Migration Solutions
To identify hot pages, past page-migration solutions rely
on (1) causing hinting page faults [5, 26, 42, 65], (2) scan-
ning PTEs [4, 7, 15, 18, 41, 46, 48, 55, 68], or (3) sampling
accessed memory addresses [15, 31, 53]. They are effective
for certain applications but are also known to incur a notable
performance overhead [32, 42, 46].
Solution 1: Causing hinting page faults. It periodically
samples a certain number of pages (e.g., 64K pages) in slow
memory, resets the present bit in the PTE of each sampled
page, and invalidates the corresponding TLB entries across
all CPU cores to unmap the corresponding pages. If such
pages are accessed later, soft page faults will occur, and the
OS will migrate them to fast memory. TPP is the latest page-
migration solution that determines hot pages based on such
a mechanism. However, it consumes a significant number
of CPU cycles for accessing the PTEs of sampled pages, in-
validating TLB entries, and handling page faults, especially
degrading the performance of latency-sensitive applications
such as Redis [62].
Solution 2: Scanning PTEs. It periodically scans every
valid PTE associated with pages in slow memory. At a given
epoch, it checks whether the access bit of each PTE is set
or not. If it detects that the access bit was set, it increments
the access count associated with the page and resets the ac-
cess bit. Note that the access bit can be set again only if an
access to the page incurs a TLB miss later, necessitating the
invalidation of the corresponding TLB entry at some point.
Unlike Solution 1, it passively invalidates TLB entries, de-
pending on architectural events, such as TLB conflict misses
and context switching. To determine whether the page is hot
or not, it needs to accumulate the access count over multiple
epochs, each consuming a large number of CPU cycles to
scan all PTEs. Lastly, since the access bit is a Boolean value,
capturing only one access in a given epoch, regardless of
the number of accesses to the page, it cannot determine the
precise number of accesses to the page.
Solution 3: Sampling accessedmemory addresses. It har-
nesses the modern CPU’s capability to sample architectural
events, e.g., Processor Event-Based Sampling (PEBS) in Intel
CPUs [20] to determine hot pages [15, 31, 53]. Specifically,
it samples LLC miss addresses at a specified frequency (e.g.,

CXL Controller

F
le

x
 B

u
s
 P

h
y
s
ic

a
l
L
a
y
e
r

(P
H

Y
)

Rx

Tx

M
e
m

o
ry

 d
e
v
ic

e

D
D

R
 C

h
 0

ECC

M
e
m

o
ry

c
o

n
tr

o
lle

r

CXL link/

transaction

layers

CXL IP

AXI-MM AVMM

CXL.io

core

logic

DCOH slice

cache/mem

request

handler

Device $

PCIe/

CXL.io

CXL.cache

/CXL.mem

MCuser-defined

CSR/MMIO

space

AFU

Coherent

request AFU

1

2

3

C
o
h
e
re

n
t

m
e
m

 A
F

U
 I

/F

4

Figure 1. Overview of a CXL controller architecture imple-
mented in Intel Agilex FPGA devices.

once every 1,000 LLC misses) and stores them in the PEBS
buffer. When the PEBS buffer is full, an interrupt is triggered,
and the sampled addresses in the PEBS buffer are processed
and analyzed by the CPU to identify hot pages. It may deter-
mine the number of accesses to pages more precisely than
Solutions 1 and 2. Yet, it may lack preciseness in identifying
hot pages because it does not capture all the addresses. Fur-
thermore, it incurs a higher performance overhead to more
precisely identify hot pages, as a higher sampling frequency
interrupts the CPU more frequently to process the sampled
addresses in the PEBS buffer. Lastly, at the moment, the PEBS
on the Intel CPU does not support sampling LLC misses to
CXL memory [67].

2.2 CXL Memory
CXL device types. Built on the physical layer of PCIe, CXL
defines three device types: CXL Types 1, 2, and 3, each with
a distinct composition of three protocols: CXL.io, CXL.cache,
and CXL.mem. CXL.io is the common protocol for all three
types of CXL devices to initialize the interface between a
host CPU and a CXL device [14]. CXL.cache facilitates device
cache and cache-coherent Device-to-Host (D2H) memory
accesses for CXL Type-1 and Type-2 devices. The device can
access the entire host memory space in a cache-coherent
manner. CXL.mem supports device memory and Host-to-
Device (H2D) and Device-to-Device (D2D) memory accesses
for CXL Type-2 and Type-3 devices. Since the host CPU can
access the entire device memory space, we can use both CXL
Type-2 and Type-3 devices as memory capacity/bandwidth
expanders that serve as slow memory in a tiered-memory
system.
CXL controller architecture. Figure 1 depicts a CXL con-
troller architecture implemented in Intel Agilex FPGA de-
vices. It consists of 1 PCIe physical layer, 2 CXL link layer,
3 CXL transaction layer, and 4 memory controller (MC) IPs.
2 and 3 implement the CXL.cache and/or CXL.mem proto-
col functions, depending on a desired device type. Between
3 and 4 , we may implement diverse near-memory hard-
ware functions in the Accelerated Function Unit (AFU) and

606

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

the Coherent request AFU (CAFU). The AFU can snoop and
manipulate not only addresses from the host CPU to device
memory but also data from the host CPU or the MC. Addi-
tionally, it can independently issue non-cache-coherent D2D
memory access requests to the device memory. CXL.cache
accompanies one or more instances of the Device Coherence
Engine (DCOH), each including device cache and serving
D2H and H2Dmemory accesses from the CAFU and the host
CPU, respectively, in a cache-coherent manner. 2 and 3
are collectively referred to as CXL IP in this work.

3 CXL-driven Page and Word Access
Counting

Limitations of current approaches. It has been challeng-
ing to precisely determine the number of accesses to every
page and word in DRAM with commodity systems. For ex-
ample, Intel PEBS can sample only one address out of a hun-
dred at most. A dynamic binary instrumentation using Intel
Pin [24] can capture every memory access address, but it re-
quires notable effort to precisely determine DRAM access ad-
dresses, especially when other applications co-run and cause
interference at L2 cache and LLC. As such, it has been elusive
to assess whether pages identified by past page-migration
solutions are truly hot pages and how many words in such
pages are accessed or not in commodity systems. Meanwhile,
the emergence of a commodity FPGA-based CXL device has
opened up an unprecedented opportunity to tackle such a
challenge. In this section, we first describe page and word
access counting functions (PAC and WAC) in the CXL con-
troller of such a device. PAC and WAC exploit the inherent
capability of near-memory processing in a CXL controller
to precisely count the number of accesses to every page
and word in CXL memory. Subsequently, we describe soft-
ware support to use PAC and WAC as a complete profiling
solution.
Hardware. In this section, we assume that a system supports
a 48-bit Physical Address (PA) space, and the OS manages
memory in 4KB page granularity, except when specifically
allocating 2MB or 1GB huge pages. Then DRAM is accessed
with PA[47:6] because the access granularity of DRAM is 64B
(i.e., the size of a cache line), and the Page Frame Number
(PFN) of a 4KB page is identified by PA[47:12]. Figure 2
depicts the hardware architecture of PAC and WAC based on
these assumptions. The PAC hardware consists of three key
components. 1 An address-to-PFN converter snoops every
memory access address (PA[47:6]) from the CXL IP (Figure 1-
3) to the MCs (Figure 1- 4), and right-shifts the address by 6
bits to obtain the PFN. 2 An SRAM unit provides a capacity
of 4MB, with each entry storing an 𝐿-bit access count for a
4KB page. 3 Miscellaneous logic comprises an 𝐿-bit adder, a
controller, and configuration/control registers. Lastly, WAC
has the same hardware architecture as PAC, but it does not
convert a given address to a PFN. Note that PAC and WAC

CXL Controller

user-defined

M
e
m

o
ry

 c
o
n
tr

o
lle

r

MCCXL-IP

PAC

Memory access

Snoop

Address to

PFN/Word

Converter

4MB SRAM
4MB SRAM

Miscellaneous

PFN Cnt.

1

3

2

CSR/MMIO

space

WAC

4MB SRAM

Word Cnt.

2

D
C

O
H

C
X

L
.i
o

 c
o

re
 l
o

g
ic

Figure 2. Page Access Counter (PAC) and Word Access
Counter (WAC) in a CXL controller.

fundamentally differ from event sampling-based approaches
such as PEBS since PAC and WAC track every DRAM access
address.
The SRAM unit is indexed by the PFN from the address-

to-PFN converter. For a given PFN, the controller gets the
corresponding access count from the SRAM unit, increments
it using the adder, and then stores it back to the SRAM unit.
An overflow may happen when 𝐿 is small. However, for
example, a 16-bit access count saturates only after ∼20𝑠 ,
even for memory-intensive applications in our experiments.
Nonetheless, PAC may reset saturated counters after accu-
mulating them into the corresponding 64-bit counters stored
in the access-count table allocated in a host or device
memory region using D2H or D2D memory accesses. After
completing the execution of a given workload, the host CPU
can obtain the precise number of accesses to each page from
the access-count table. The SRAM unit is exposed to the host
CPU as an MMIO region, allowing PAC software to directly
access the access counts.
Software. The software interface for PAC and WAC first
maps the SRAM units and configuration/control registers
to an MMIO region. Then, it can access the access counts
through the MMIO interface over CXL.io. However, since
the size of an MMIO region is limited to 2MB, we use a
1MB region to access the access counts in the SRAM unit
and the remaining 1MB region to access configuration and
control registers. To access 4MB of the access counts with a
1MB region, we design PAC and WAC hardware functions to
use a configuration register to store a base address for each
1MB region of the SRAM unit and access the access counts
with the base address plus an offset given by PAC and WAC
software interfaces. Therefore, by changing the base address
in the configuration register through the MMIO interface, it
can access all access counts.
Scalability. When the SRAM unit in the CXL controller
is not large enough to store all access counts for a given
CXL DRAM capacity, we may take one of the following
approaches. First, we adapt the SRAM unit as a cache to
store a subset of counters. When a cache miss occurs, the

607

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

controller chooses a counter to evict, writes the count to
the corresponding counter in the access-count table using
a D2H or D2D memory access, and then writes 1 to the
counter in the SRAM unit. Second, we may limit the size
of the CXL memory region that PAC or WAC monitors at
a time by setting a configuration register that specifies the
memory address range. Then, we monitor either (1) all CXL
memory regions over multiple intervals during a single run
or (2) only one CXL memory region during a single run and
repeat it for different CXL memory regions over multiple
runs. In this work, WAC monitor a 128MB memory region
at a time, where each word address maps to a 4-bit counter
in the SRAM array.

4 Usefulness and Cost of CPU-driven Page
Migration Solutions

In this section, we first use PAC to evaluate how precisely
CPU-driven page-migration solutions, ANB and DAMON de-
termine true hot pages. We choose the latest version of ANB
over TPP because TPP has some known problems [63] that
we have also experienced, whereas ANB has improved over
the years. Also, we do not evaluate Memtis, a representative
sampling-based page-migration solution, because the Intel
CPU lacks PEBS support for CXL devices and, consequently,
cannot correctly run Memtis at the moment [67]. Second, we
assess how many words in those pages are accessed, using
WAC. Lastly, we evaluate the performance cost of identify-
ing hot pages. Note that these analyses are not intended to
provide comprehensive evaluations of the effectiveness of
these solutions across a wide range of memory-intensive ap-
plications. Instead, they are meant to demonstrate the utility
of PAC and WAC as a profiling solution for developing and
optimizing page-migration solutions.

4.1 Usefulness of Identified Hot Pages
In this section, we obtain the access counts of 𝐾 hot pages
identified by ANB and DAMON by looking up PAC’s access-
count table with the PFNs of these pages. We then compare
these access counts to those of the top-𝐾 hot pages deter-
mined by PAC. Lastly, we evaluate the access sparsity of
pages using WAC.
Access count. Using PAC, we first evaluate the hotness of
pages determined by ANB and DAMON with the following
steps. (S1) We modify ANB and DAMON to store the PFNs
of identified hot pages into a hot-page list but not to migrate
these pages. (S2) We execute a given benchmark with a page-
migration solution after using Linux cgroup to allocate all
the pages of the benchmark to CXL DRAM. This makes every
DRAM access from the benchmark served by CXL DRAM.
(S3) During the execution, the page-migration solution stores
the PFNs of identified hot pages in the hot-page list, while
PAC records the number of accesses to every page in the
access-count table, respectively. (S4) After the execution, we

0

0.2

0.4

0.6

0.8

1

lib
.

bc bf
s cc pr

ss
sp tc

ca
ct

u.

fo
to

.

m
cf

ro
m

s

re
di

s

m
ea

n

A
cc

es
s c

ou
nt

 ra
tio

ANB DAMON

Figure 3. Average access-count ratio of hot pages identified
by ANB and DAMON.

take a PFN from the hot-page list, determine the number of
accesses to the page corresponding to the PFN by looking
up the access-count table with the PFN, accumulate it into
k_access_count, and repeat this for every PFN in the hot-
page list. (S5) We also find the top-𝐾 hot pages from the
access-count table, determine the accumulated number of
accesses to these pages, and store it in top_k_access_count.
Then, we divide k_access_count by top_k_access_count
to get an average access-count ratio, which serves as a metric
to evaluate how precisely a given page-migration solution
identifies true hot pages.

Figure 3 plots the average access-count ratio of hot pages
identified by ANB and DAMON. For this experiment, we
run twelve popular memory-intensive benchmarks. See §6
for detailed information on the setup and these benchmarks.
We set 𝐾 to be up to 128K pages (i.e., 512MB) corresponding
to roughly 1/16 of the memory footprint of all benchmarks
above. We collect up to 128K hot pages identified by these
solutions and record the number of accesses to every page.
We repeat the measurement above at 10 different random
execution points. A vertical line across a bar in Figure 3
represents the minimum and maximum values of the av-
erage access-count ratio across 10 execution points. This
is to evaluate the preciseness of the hot pages determined
by these solutions at various execution phases. Except for
cactuBSSN_r, fotonik3d_r, and mcf_r, we find that both
solutions give the access-count ratio below 0.4 on average.
That is, the hot pages identified by ANB and DAMON are
not as hot as the top-𝐾 hot pages. Overall, DAMON offers
higher average access-count ratios than ANB.

Observation 1: CPU-driven page-migration solutions often
identify warm pages as hot pages.

Access sparsity. The page-migration solutions migrate an
entire page from slow memory to fast memory, regardless of
whether only a few or all words in the page are hot. Mean-
while, only a small number of words in a page can be fre-
quently accessed. In other words, such a sparse page can
be identified as a hot page because of a few very hot words.
However, when the host CPU migrates such sparse pages, it
not only wastes the capacity of fast memory but also pollutes
the cache hierarchy. Therefore, if there coexist sparse and

608

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

0

0.2

0.4

0.6

0.8

1
lib
.

bc bf
s cc pr

ss
sp tc

ca
ct
u
.

fo
to
.

m
cf

ro
m
s

c.
-li
b

m
cd

re
di
s

C
D
F

4 8 16 32 48

Figure 4. Probability of a 4K page where at most 𝑁 unique
64B words are accessed. mcd and c.-lib are abbreviations
for Memcached and CacheLib, respectively.

dense hot pages, migrating dense hot pages can be more
beneficial than migrating sparse hot pages. However, the
current page-migration solutions lack the ability to distin-
guish between sparse and dense hot pages. This inspires us
to leverage WAC and investigate the access sparsity of pages
in memory-intensive applications.

Figure 4 plots the probability of a 4K page where at most
4, 8, 16, 32, and 48 unique 64B words (6.25%, 12.5%, 25%, 50%,
and 75% of words in a page) are accessed. This shows that
the likelihood of a page having 25% or fewer of its unique
words accessed is 86%, 76%, and 74% for Redis, Memcached,
and CacheLib, respectively. That is, most pages in these
benchmarks are sparsely accessed. In contrast, the pages
in the SPEC CPU 2017 benchmarks, except for roms_r, are
densely accessed, as the probability of a page with at least
75% of its words accessed is 87% to 92%. The GAP benchmark
suite exhibits greater variance across benchmarks in the
probability of sparse pages. The pages in PageRank and SSSP
are mostly densely accessed, with the probability of a page
having at least 75% of its words accessed being 98% and
89%, respectively. In contrast, Liblinear, BC, BFS, CC, and
TC present notable access sparsity, with the probability of a
page with at most 25% of words accessed being 15%, 4%, 17%,
20%, and 12%, respectively.

Observation 2: A large percentage of pages in certain
applications can be sparsely accessed.

4.2 Performance Cost of Identifying Hot Pages
To identify hot pages, CPU-driven page-migration solutions
perform expensive operations (§2.1). When such expensive
operations are performed periodically and frequently, they
can interfere with application execution, incurring a notable
performance penalty, especially for latency-sensitive applica-
tions. In this section, to quantify the performance overhead
of identifying hot pages, we pin all Linux kernel processes,
including the page-migration process, to a CPU core. Next,
we measure the CPU cycles consumed by the Linux kernel
processes after disabling only migrate_pages(), to evaluate
the performance overhead of identifying hot pages alone.
Our experiment, based on the methodology described

above, shows that ANB and DAMON increase the number

of CPU cycles consumed by the Linux kernel by up to 487%
and 733% (with an average of 159% and 277% across the
benchmarks), respectively. This is because scanning a large
number of PTEs (DAMON), invalidating TLBs (ANB), and
handling soft page faults (ANB) consumes a large number
of CPU cycles (§2.1). This significant increase in CPU cycles
consumed by ANB and DAMON can disturb the execution
of applications running on the same CPU core. For example,
ANB and DAMON increase the 99th-percentile (p99) latency
of Redis, a representative latency-sensitive application, by
34% and 39%, respectively. The increase in execution time of
best-effort applications is also notable. For instance, ANB and
DAMON increase the execution time by up to 4.6% (SSSP)
and 8.6% (Liblinear), respectively. Note that recent work
has reported that even sampling-based page migration solu-
tions can also considerably degrade application performance
when the sampling rate is high to achieve high precision in
identifying hot pages (e.g., more than 15% when sampling
one every 100 LLC miss addresses [75]).

Observation 3: The performance overhead of identifying
hot pages is notable enough to potentially degrade applica-
tion performance if the benefit do not compensate for the
overhead.

5 M5: Track, Filter, and Migrate
In this section, to facilitate the development of effective CXL-
driven page-migration solutions, we present M5, consisting
of two components: (1) Hot Page Tracker (HPT) and Hot
Word Tracker (HWT) and (2) M5-manager. HPT and HWT,
inspired by hardware-based Row-Hammer (RH) defense so-
lutions, cost-efficiently track the top-𝐾 hot pages and words,
respectively. HPT and HWT can eliminate the high perfor-
mance overhead of identifying hot pages and introduce the
ability to determine sparse hot words, respectively, which the
CPU-driven page-migration solutions lack. M5-manager pro-
vides software interfaces to HPT and HWT, allowing users to
explore diverse policies for their CXL-driven page-migration
solutions.

5.1 HPT and HWT
Need for cost-efficient top-𝐾 hot page and word track-
ers. Page Access Count (PAC) andWord Access Count (WAC)
are useful offline profiling mechanisms, but they have two
limitations when used as online mechanisms to determine
hot pages and words, respectively. First, they impose a high
storage cost. For example, PAC and WAC demand 128MB
and 8GB of memory space, respectively, to store the num-
ber of accesses to every page and word for 256GB of CXL
DRAM. Second, they require a significant amount of time
to determine the top-𝐾 hot pages and words because either
software or hardware must fetch all access counts and then
sort them. For instance, it takes hundreds of milliseconds
for a CPU core to access 2M 16-bit access counts for 8GB of

609

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

memory. This prevents us from making agile decisions on
which pages to migrate.
Algorithm and requirement. To minimize the storage and
performance overheads of determining hot pages and words
without significantly compromising preciseness, we may ex-
ploit one of the top-𝐾 estimation algorithms for HPT and
HWT. Among such algorithms, streaming algorithms [45]
have been widely studied and adopted in various fields, from
networking applications [16] to Row-Hammer defense so-
lutions [27, 40, 49]. Specifically, the streaming algorithms
can be categorized into counter-based, sketch-based, and
sampling-based algorithms, represented by Space-Saving [43],
CountMin-Sketch (CM-Sketch) [12], and Sticky-Sampling [38],
respectively. After analyzing the preciseness, scalability, and
hardware cost of these algorithms, we choose CountMin-
Sketch (CM-Sketch) and compare it with a variant of Space-
Saving designed for a Row-Hammer defense solution,Mithril [27],
in this work.

TomakeHPT andHWTuseful and practical, we determine
the following requirements. First, they should be able to
handle each memory access every 2.5𝑛𝑠 (i.e., tCCD or the
highest memory access rate of DDR4 3200 DRAM). That is,
they must operate at least at 400MHz. Second, when the
host CPU queries the top-𝐾 hot addresses, it should be able
to return them quickly. Lastly, the hardware cost should be
reasonable, although it is a secondary constraint.
Architecture and operations. Both HPT and HWT share
the same architecture and operations, except that they use
page and word addresses, similar to PAC and WAC, respec-
tively. In this section, we refer to both HPT and HWT as the
top-𝐾 tracker. A top-𝐾 tracker comprises (1) an SRAM-based
CM-Sketch unit and (2) a sorted Content Addressable Mem-
ory (CAM) unit, which keep track of the (estimated) access
count of each accessed address and the top-𝐾 hot addresses,
respectively. Figure 5 illustrates the architecture and oper-
ations of the top-𝐾 tracker. First, CM-Sketch comprises an
SRAM arraywith𝐻 rows and𝑊 columns of entries, designed
to estimate the number of accesses to a given address. Each
entry stores an access count. For a given memory access,
the address is applied to 𝐻 hash functions in parallel (1).
Each hash function is associated with a row, and one of the
𝑊 entries in the row, indexed by the hash function’s output
for the address, is incremented by one (2). Among the 𝐻
incremented access counts across the rows, the minimum
value is determined by a comparator tree (3) and becomes
the estimated access count of the address.
Second, the sorted CAM unit comprises 𝐾 entries, each

storing a pair of an address (tag) and an access count (value),
sorted based on the access counts.When amemory address is
provided, it is checked against the sorted CAM unit. For a hit,
the access count field of thematched CAMentry is updated
with the access count from the CM-Sketch unit (4). For a
miss, the access count is compared with the minimum access
count from the sorted CAM unit (5). If the access count is

CountMin-Sketch

W

H

hash-1

hash-2

hash-H

Min
Memory

Address

0xZ
0xD

0xE

Addr.

2
2

1

Cnt.

Top-K sorted CAM

2 3+1 1
1+1 0 3

1 2 2+1

2
0xZ

Address

hit

Larger than

table-min

Update

Counter

Update

Address &

Counter

Yes Yes

No

Control for top-K sorted CAM

0xA 10

K

1
2

3

4

5

6

Comparator

Tree

Figure 5. A CM-Sketch top-𝐾 tracker.

larger than the minimum access count, the entry storing the
minimum access count is updated with the address and the
access count from the CM-Sketch unit (6). In this way, the
sorted CAM unit can keep track of the top-𝐾 hot addresses
and quickly report them back to M5-manager (§5.2), which
runs on the host CPU and places a query. Both the CM-Sketch
unit and the sorted CAM unit can be reset immediately after
the query is served to track a fresh set of the top-𝐾 hot
addresses for the next epoch.

5.2 Manager
M5-manager consists of four components: 1 Monitor, 2
Nominator, 3 Elector, and 4 Promoter, providing a col-
lection of interfaces and a template implemented in software
(Figure 6). Monitor interfaces with performance counters in
the host CPU, which provide useful statistics for users to de-
termine the frequency of page migration and assess whether
the previous page migration was effective or not. Nominator
not only interfaces with HPT and HWT to collect hot page
and word addresses, respectively, but also processes these ad-
dresses to help users identify more useful hot pages. Elector
offers a template that incorporates Monitor and Nominator,
allowing users to easily design their hot-page migration poli-
cies. Promoter provides in-kernel components that interface
between Elector and the Linux kernel to launch the migra-
tion of pages identified by Nominator to DDR DRAM. Lastly,
M5 depends on a capability of the latest Linux kernel, Multi-
Generation LRU (MGLRU) [72], to choose pages to demote
to DDR DRAM. It has been proven to be robust, precise, and
cost-effective in past work [25, 31, 44, 71].
The underlying implementation of M5-manager resem-

bles ANB, which periodically migrates pages. However, M5-
manger differs from ANB in how migrations are triggered
and how responsive the migration is. Besides, the compo-
nents of M5-manager are all user-space programs except

610

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

DDR
DRAM

CXL
DRAM

Mem

Migration
migrate_page()

/proc/zoneinfo

pcm-memory

CXL-FPGA
Counters

Rate
control

Mask_HPA

0x1

0x7

0x1

0x1

HWT & HPT

Migration
control

LLC
Miss

x64
_HWA

CL >> 6

Reverse
Mapping

addr

ctrl MG
LRU

Monitor 1 Elector3

Nominator2
Promotor

4

Figure 6. An overview of the M5 manager.

for Promoter, whereas those of ANB are all kernel-space
programs. Such a design choice facilitates better software
compatibility with the fast-evolving kernel, as it minimizes
and isolates the code that depends on a specific kernel. It
also helps M5-manager seamlessly integrate with other ker-
nel memory management functions, such as cgroup. The
remainder of this section describes the four M5-manager
components, along with guidelines derived from our exten-
sive profiling of various benchmarks to help users design
effective page-migration policies.
1 Monitor. HPT can precisely and transparently identify
hot pages in CXL DRAM. Nonetheless, such a capability
alone is not sufficient to design an effective page-migration
solution, especially when the capacity of DDR DRAM al-
located to a given application is constrained. Specifically,
since HPT cannot discern whether hot pages in CXL DRAM
are hotter than those in DDR DRAM, blindly migrating hot
pages identified by HPT to DDR DRAM may end up de-
moting even hotter pages to CXL DRAM, thereby degrad-
ing application performance. This demands metrics that
help a page-migration policy determine whether to migrate
pages and how aggressively they should be migrated to
DDR DRAM. To address such needs, M5-manager provides
Monitor, which captures various utilization statistics of a
given tiered-memory system through three functions de-
scribed in Table 1: nr_pages(), bw(), and bw_den(). Note
that Monitor reports only read bandwidth because write
accesses to both DDR DRAM and CXL DRAM occur only
when they miss the LLC, which first incurs read accesses to
them under the write-allocate policy. Below we discuss why
these statistics can serve as useful metrics.

Suppose that nr_pages(DDR) and nr_pages(CXL) pages
are randomly allocated to DDR DRAM and CXL DRAM, re-
spectively. When nr_pages(DDR) + nr_pages(CXL) is large
enough, we hypothesize that bw(DDR) and bw(CXL) should

be proportional to nr_pages(DDR) and nr_pages(CXL), re-
spectively. To validate this hypothesis, we run mcf_r with
the nr_pages(DDR)/nr_pages(CXL) ratios of 2, 1, and 1/2
and observe that the bw(DDR)/bw(CXL) ratios are 2.02, 0.919,
and 0.571, respectively. From this, we can first infer that
bw(DDR) should increase and bw(CXL) should decrease, as
hotter pages are migrated to DDR DRAM. Second, we recog-
nize that the bandwidth density, bw_den(node) (= bw(node)
/ nr_pages(node)), is also a useful metric to assess the den-
sity of hot pages. For instance, if bw_den(CXL) is higher
than bw_den(DDR), CXL DRAM may store more hot pages
per allocated capacity than DDR DRAM. Lastly, we note
that application performance is proportional to the total
consumed bandwidth (= bw(DDR) + bw(CXL)) for a given
execution phase.

Guideline 1: If bw_den(CXL) is higher than bw_den(DDR),
hot pages should be migrated from CXL DRAM to DDR
DRAM as soon and aggressively as possible.
Guideline 2: Hot pages can continue to be migrated to
DDR DRAM as long as bw(DDR) keeps increasing, even if
bw_den(DDR) exceeds bw_den(CXL).

2 Nominator. Based on the statistics from Monitor, M5-
manager may decide to migrate hot pages to DDR DRAM.
It may simply access HPT to get hot-page addresses and
then migrate these hot pages, also referred to as HPT-only
Nominator. However, aswe discussed earlier (§4.1), wemight
prefer to migrate dense hot pages over sparse ones, especially
when the hotness (i.e., access count) of pages is similar. To
identify denser hot pages, M5-manager provides Nominator,
which can also leverage hot-word addresses from HWT. It
comprises two data structures, _HPA and _HWA (Figure 6),
which store hot-page addresses and hot-word addresses from
HPT and HWT, respectively. Each entry of _HPA also stores a
64-bit mask, where each bit is set by the hot-word addresses
from _HWA that map to the PFN stored in the entry. When-
ever invoked, Nominator accesses _HPA and _HWA, which are
periodically updated by HPT and HWT using the D2H mem-
ory access capability of CXL Type-2 devices (§2.2), to get
hot-page and hot-word addresses, respectively.

With _HPA and _HWA, it offers two mechanisms that facili-
tate a given hot-page migration policy to identify denser hot
pages. The first mechanism, dubbed HPT-driven Nominator,
searches _HPA updated by HPT, using the PFNs derived from
the hot-word addresses from _HWA. Upon finding a matching
PFN in _HPA, it sets one bit of the 64-bit mask, indexed by the
relative word address in the page. Depending on how many

Table 1.Monitor functions.

Function Description Tool
nr_pages(node) Number of pages allocated to node pcp-zoneinfo
bw(node) Consumed read bandwidth of node pcm
bw_den(node) bw(node) per allocated capacity

611

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

mask bits are set in a hot page, the page-migration policy
can determine whether the hot page is sparse or dense. The
second mechanism, named HWT-driven Nominator, starts
with an empty list of _HPA and uses only hot-word addresses
from _HWA to construct _HPA. As HWT-driven Nominator
does, it searches _HPA using the page addresses converted
from hot-word addresses. If it does not find any match, it
adds the page address to the PFN field of an _HPA entry and
sets the 64-bit mask, which serves as an access count, to one.
If it finds a match, it increments the access count stored in
the associated 64-bit mask.
Guideline 3: HPT-driven Nominator can be useful for
applications with a mix of dense and sparse hot pages, such
as roms and liblinear.
Guideline 4: HWT-driven Nominator can be useful for
applications with only sparse hot pages, such as Redis and
Cachelib.

3 Elector. Based on the statistics obtained by Monitor
and the hot pages identified by Nominator, Elector de-
termines the frequency of page migration and whether to
migrate hot pages to DDR DRAM. Algorithm 1 provides a
sample Elector implementation where users can simply
statically or dynamically adapt tunable parameters. First,
following Guideline 1, we introduce a function, fscale(),
which scales the default frequency, f_default, for page
migration proportional to bw_den(CXL)/bw_den(DDR) (Al-
gorithm 1:line-2). f_default is a tunable parameter, and
fscale() can employ a monotonically increasing linear or
non-linear function, such as 𝑦 = 𝑥𝑛 or 𝑦 = 𝑛 × 𝑒𝑥𝑝𝑥 , where
𝑛 is a tunable parameter. Next, we present two more func-
tions, bw_tot and rel_bw_den(), i.e., bw(DDR) + bw(CXL)
and bw_den()/bw_tot, respectively. If rel_bw_den(DDR) in-
creases compared to the previous period, the previously
migrated pages might have contributed to increasing the
bandwidth consumption of DDR DRAM, i.e., application per-
formance, based on Guideline 2 (Algorithm 1:line-4—6). Thus,
Elector invokes Promoter to migrate hot pages nominated
by Nominator to DDR DRAM. Otherwise, Elector stops
migrating pages at the current period, as the migrated pages
have decreased the bandwidth consumption of DDR DRAM.
We normalize bw_den() to bw_tot to account for changes
in bw_den() caused by the execution-phase changes that
increase or decrease the intensity of memory access over
time.
4 Promoter. It provides an interface between Elector and
the Linux kernel to migrate hot pages decided by Nominator.
Specifically, upon receiving the hot-page addresses from
Elector, it updates a Linux kernel proc file, an in-kernel
component of Promoter, with these addresses. When the
proc file is updated, another in-kernel component first checks
whether the given pages can be safely migrated to DDR
DRAM, as certain pages may be pinned to specific nodes or
physical addresses for various reasons. For example, Promoter

Algorithm 1: Elector

1 while (true) {
2 T = 1 / (fscale(bw_den(CXL) / bw_den(DDR)) * f_default);
3
4 bw_tot = bw(DDR) + bw(CXL);
5 rel_bw_den(DDR) = bw_den(DDR) / bw_tot;
6 if (rel_bw_den(DDR) - prev_rel_bw_den(DDR) > 0) {
7 Promoter(Nominator());
8 }
9 prev_bw_tot = bw_tot;
10 prev_rel_bw_den(DDR) = rel_bw_den(DDR);
11
12 sleep(T);
13 }

will reject the migration of a page if the user explicitly re-
quests the page to be allocated on a CXL device or if the page
is pinned for Direct Memory Access (DMA). Subsequently,
when it determines that migrating the pages to DDR DRAM
is safe, it invokes migrate_pages().

6 Evaluation Setup
System. We use a dual-socket server based on the Intel 4th-
generation Xeon Scalable Processor. We connect the server
to the latest Intel Agilex-7 I-Series development kit [22] (or
simply Agilex7 henceforth), which serves as a CXL devel-
opment platform in this work. Agilex7 is integrated with
a hardened CXL ×16 endpoint IP and a DDR4-2666 DRAM
controller connected to 8GB of on-board DRAM. We use the
same number of CPU cores as the number of benchmark
instances or threads and disable the remaining CPU cores
using the Linux CPU hotplug feature [59]. This is to capture
the interference incurred by the page-migration processes
by running the page-migration processes and one of the in-
stances or threads of a given benchmark on the same CPU
core. Since we use only a subset of CPU cores, we scale the
LLC capacity proportional to the number of used CPU cores
using Intel Cache Allocation Technology (CAT) [23]. See
Table 2 for a detailed description of our system.
Benchmark. We evaluate twelve memory-intensive bench-
marks. Specifically, we choose the fourmostmemory-intensive
benchmarks from the SPECrate CPU 2017 benchmark suite [61]:
mcf_r, cactuBSSN_r, fotonik3d_r, and roms_r, after run-
ning all the benchmarks on our server and measuring LLC
Misses Per Kilo Instructions (MPKI). We run eight instances
of each SPECrate benchmark, which collectively have a mem-
ory footprint close to the capacity of our 8GB CXL DRAM,

Table 2. System configuration of a dual-socket server.

CPU 2× Intel® Xeon 6430 CPUs @2.1 GHz [21], 32 cores
and 60 MB LLC per CPU, Hyper-Threading disabled

Memory Socket 0: 4× DDR5-4800 channels
Socket 1: 4× DDR5-4800 channels

612

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

Table 3. Evaluated benchmarks
Benchmark Description Footprint # cores/ways

Liblinear
Linear classification, tested with
KDD2012 dataset 6.0GB 20/10

BC Betweenness Centrality 6.9GB 20/10
BFS Breadth-First Search 6.9GB 20/10
CC Connected Components 6.9GB 20/10
PR PageRank 6.9GB 20/10
SSSP Single-Source Shortest Paths 6.9GB 20/10
TC Triangle Counting 5.0GB 20/10
cactuBSSN_r Einstein’s equations simulation 6.3GB 8/4
fotonik3d_r Photonic waveguide simulation 6.8GB 8/4
mcf_r Single-depot vehicle scheduling 4.9GB 8/4

roms_r
Free-surface ocean model simu-
lation 6.7GB 8/4

Redis In-memory KVS with YCSB-A 6.0GB 1/1

except for mcf_r. We run one instance of each of the follow-
ing benchmarks: an in-memory database (Redis [54] version
6.0.16), a machine learning application (Liblinear [36] ver-
sion 2.47), and six graph processing benchmarks (GAP [6]):
BFS, SSSP, PR, CC, BC, and TC, all using their original configu-
rations. As inputs, we use YCSB-A [11] (Redis), KDD 2012 [35]
(Liblinear), Twitter [30] (BFS, CC, TC, and PR with undi-
rected graph), and Google [1] (BC and SSSP with directed
graph). We adjust the size of these input datasets to have a
memory footprint close to 8GB.We limit the capacity of DDR
DRAM that a given benchmark can use to 3GB, ensuring that
roughly 50% of the pages can be migrated to DDR DRAM.
Page-migration solutions.We use ANB and DAMON as
CPU-driven pagemigration solutions. For ANB,we use Linux
version 5.19, as we assess it provides the most stable page-
migration performance; in some other Linux versions, ANB
fails to migrate any pages for certain benchmarks we evalu-
ate. For DAMON we use Linux kernel version 6.11, which
has officially integrated it as one of the page-migration so-
lutions. M5 is implemented in Linux kernel version 6.5. A
specific kernel version may affect application performance.
However, we decided not to port DAMON and ANB to the
same kernel version as M5 because of the following reasons.
First, we do not observe an obvious application performance
trend across different Linux kernel versions. Second, one of
the key evaluation points is the access-count ratios, which
are not affected by a specific kernel version.

7 Evaluation
In this section, we first explore the design space of CM-
Sketch and Space-Saving top-𝐾 trackers, each implemented
with both Agilex7 and a 7𝑛𝑚 logic technology [10]. Second,
we compare the average access-count ratio and application
performance among ANB, DAMON, and M5.

7.1 Design Space Exploration of Top-𝐾 Trackers
To explore the design space of HPT and HWT, we assess the
average access-count ratio, size, and power of a CM-Sketch
top-𝐾 tracker while sweeping its key design parameter, i.e.,
the number of access counts (=𝐻×𝑊).We also evaluate those

of a Space-Saving top-𝐾 tracker while varying 𝑁 , which is
equivalent to 𝐻 ×𝑊 , as both represent the number of access
counts. We use 𝑁 for both hereafter. The Space-Saving top-
𝐾 tracker may comprise a sorted CAM unit with 𝑁 entries,
each storing an address (tag) and an access count (value).
The CAM unit is the same as the one used for the CM-Sketch
top-𝐾 tracker, but it requires 𝑁 CAM entries to store and
track the access counts of 𝑁 addresses, where 𝑁 should
be much larger than 𝐾 . In contrast, the CM-Sketch top-𝐾
tracker stores the access counts of 𝑁 addresses in the SRAM
unit, while tracking the top-𝐾 access counts in the CAM unit,
decoupling the access counts from the sorted CAM unit. The
preciseness of both the Space-Saving and CM-Sketch top-𝐾
trackers increases with 𝑁 , but the CAM complexity of the
Space-Saving top-𝐾 tracker limits 𝑁 .
Size and power under timing constraint. Before assessing
the average access-count ratio of top-𝐾 trackers, we synthe-
size both the Space-Saving and CM-Sketch top-𝐾 trackers for
various 𝑁 and fixed 𝐾 (= 5) with both Agilex7 and the 7𝑛𝑚
logic technology. This is done to determine the maximum 𝑁

that meets the 400MHz timing constraint for both the top-𝐾
trackers. Although our platform is based on FPGA, we also
evaluate ASIC-based top-𝐾 trackers, because they will be
used in industry CXL DRAM products. The Space-Saving
and CM-Sketch top-𝐾 trackers employ𝑀 parallel CAM and
SRAM blocks (or banks), respectively, as design optimization
techniques to maximize 𝑁 while meeting the 400MHz tim-
ing constraint. For each memory address, the Space-Saving
top-𝐾 tracker must access all the CAM blocks in parallel,
whereas the CM-Sketch top-𝐾 tracking accesses only one
SRAM block, which allows pipelined accesses to different
SRAM blocks for consecutive memory addresses.
The FPGA synthesis report shows that the Space-Saving

top-𝐾 tracker can have only up to 50 CAM entries, whereas
the CM-Sketch top-𝐾 tracker can have up to 128K SRAM
entries. This large difference in 𝑁 between the two top-𝐾
trackers arises from the fact that CM-Sketch uses a 𝐾-entry
CAM unit regardless of 𝑁 , whereas Space-Saving uses an
𝑁 -entry CAM unit. Table 4 lists the size and power consump-
tion of the ASIC-based Space-Saving and CM-Sketch top-𝐾
trackers, with 𝐻 fixed at 4. In our evaluation, we sweep 𝐻
from 2 to 16 and see only a secondary effect on both the aver-
age access-count ratio and the timing. Even the ASIC-based
Space-Saving top-𝐾 tracker can have at most 𝑁 = 2K, pro-
viding almost an order of magnitude fewer entries than the
FPGA-based CM-Sketch top-𝐾 tracker. For the same num-
ber of entries (e.g., 𝑁 = 2K), the Space-Saving top-𝐾 tracker
consumes 33.6× and 7.6× more chip space and power than
the CM-Sketch top-𝐾 tracker, although it can offer better
preciseness.
Average access-count ratio. To evaluate the average access-
count ratio of HPT and HWT, based on Space-Saving and
CM-Sketch for diverse 𝑁 s, we use an in-house simulator,
as the FPGA-based Space-Saving top-𝐾 tracker limits the

613

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Table 4. Size and power consumption of top-5 trackers.

Number of
Entries (𝑁)

Size (𝑢𝑚2) Power (𝑚𝑊)
Space-Saving
based (CAM)

CM-Sketch
based (SRAM)

Space-Saving
based (CAM)

CM-Sketch
based (SRAM)

50 3,649 1,899 0.7 2.0
100 7,323 2,134 1.3 2.2
512 36,374 2,878 6.4 2.7
1K 89,369 3,714 15.0 3.2
2K 179,625 5,346 29.9 3.9
8K - 13,509 - 7.9
32K - 46,930 - 23.2
128K - 180,530 - 83.8

evaluation only up to 𝑁 = 50 under the 400MHz constraint.
Specifically, we first use Intel Pin [24] and Ramulator [28] to
collect traces of cache-filtered and time-stamped addresses
to DRAM from our server running the four most memory-
intensive SPECrate CPU 2017 benchmarks, Liblinear, and
PageRank. Then, we feed the traces into our simulator to eval-
uate the preciseness of HPT and HWT, each implemented
with both Space-Saving and CM-Sketch, while sweeping 𝑁 .
Later, we will use PAC (§7.2) and FPGA-based implementa-
tions of HPT, based on Space-Saving and CM-Sketch with 50
and 32K for 𝑁 , to evaluate the average access-count ratio in
the same way as we evaluate the CPU-driven page-migration
solutions (§7.2).
Figure 7 plots the average access-count ratio of (a) HPT

and (b) HWT, relative to the precise counting of accesses to
every page and word by PAC and WAC, respectively. In this
evaluation, we first vary 𝑁 while fixing 𝐾 to 5 and the query
period to 1𝑚𝑠 and 100𝜇𝑠 for HPT and HWT, respectively. The
average access-count ratio of both the Space-Saving and CM-
Sketch top-𝐾 trackers strongly depends on 𝑁 . However, the
Space-Saving top-𝐾 tracker based is more precise than the
CM-Sketch top-𝐾 tracker for the same𝑁 because CM-Sketch
severely suffers from hash collisions when 𝑁 is small. For
example, HPT, based on the CM-Sketch top-5 tracker with
𝑁 = 2K, achieves an average access-count ratio similar to
HPT based on the Space-Saving top-5 hot-page tracker with

0

0.2

0.4

0.6

0.8

1

5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K

cactuBSSN fotonik liblinear mcf pagerank roms geomean

Space-Saving based (FPGA synthesizable)

Space-Saving based (Logic 7nm synthesizable)
CM-Sketch based (FPGA synthesizable)

N

0

0.2

0.4

0.6

0.8

1

5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K 5
0

1
0
0

5
1
2

1
K

2
K

8
K

3
2
K

cactuBSSN fotonik liblinear mcf pagerank roms geomean

A
cc

u
ra

cy
 c

o
m

p
ar

ed
 t

o
 P

A
C

A
cc

u
ra

cy
 c

o
m

p
ar

ed
 t

o
 W

A
C

N

(a)

(b)

Figure 7. Simulation-based average access-count ratio of (a)
HPT and (b) HWT.

0

0.2

0.4

0.6

0.8

1

lib
.

bc bf
s cc pr

ss
sp tc

ca
ct

u.

fo
to

.

m
cf

ro
m

s

re
di

s

m
ea

n

A
cc

es
s c

ou
nt

 ra
tio

CPU-driven Best M5 Space-Saving (50) M5 CM-Sketch (32K)

Figure 8. Agilex7-based average access-count ratios of HPT.

𝑁 = 50. Nonetheless, under the timing constraint of FPGA-
based implementations, we demonstrate that the CM-Sketch
top-𝐾 tracker can provide a higher average access-count
ratio than the Space-Saving top-𝐾 tracker with larger 𝑁 .
For instance, HPT, based on the CM-Sketch top-𝐾 tracker
with 32K entries, which we will use for the evaluation of M5
(§7), offers the average access-count ratio of 0.97 on average
across the benchmarks. In contrast, HPT, based on the Space-
Saving top-𝐾 tracker with 50 CAM entries, offers the average
access-count ratio of 0.49 across the benchmarks. Lastly, the
average access-count ratio depends on how frequently M5-
manager checks with the top-𝐾 trackers, and we observe
that it increases the preciseness as the interval decreases.

7.2 Full-System Comparison
Average access-count ratio. Figure 8 plots the average
access-count ratio of the best CPU-driven page-migration
solution between ANB and DAMON, along with M5, using
HPT based on both the Space-Saving and CM-Sketch top-
𝐾 trackers. These trackers are queried at rates determined
by Elector (Algorithm 1), which will be used for the end-
to-end performance evaluation later. This shows that HPT,
based on the CM-Sketch top-𝐾 tracker with 𝑁 = 32K, offers
3.5% and 47% higher average access-count ratios than HPT,
based on the Space-Saving top-𝐾 tracker with 𝑁 = 50, and
the best CPU-driven page-migration solution, respectively,
on average.
The average access-count from HPT, based on the CM-

Sketch top-𝐾 tracker with 𝑁 = 32K, is 0.72. That is, HPT
cannot always identify the true top-𝐾 hot pages because M5
determines these hot pages based on the access counts of
pageswithin a limited timewindow,whereas PAC reports the
top-𝐾 hot pages based on the entire execution time. As such,
HPT can hastily determine less hot pages in a given interval
because these pages were accessed intensively during the in-
terval but not so much later. Meanwhile, some pages are not
accessed intensively but are constantly accessed throughout
the execution, eventually becoming the top-𝐾 hot pages at
the end. This does not mean that M5 is not as effective as we
hope, since it is likely that intensively accessed pages at the
moment will remain hot pages in the near future, although
this is not always the case for every application. Therefore,
to use M5 more effectively, it is essential to develop a so-
phisticated policy for Elector. Lastly, the same argument

614

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

can be made for the CPU-driven page-migration solutions,
but M5, even with a simple policy, still offers notably higher
average access-count ratios for all the benchmarks, proving
its effectiveness.
End-to-end performance. Figure 9 plots the end-to-end
performance of the benchmarks when ANB, DAMON, and
M5 are deployed, normalized to that of ANB. For Redis, we
use the p99 latency as a performance metric and plot the
inverse of the normalized p99 latency values in Figure 9.
When starting to evaluate a given benchmark, we allocate
all pages of the benchmark to CXL DRAM and then let a
given page-migration solution migrate identified hot pages
to DDR DRAM. After the given DDR DRAM capacity (3GB)
is used up, whenever the page-migration solution migrates
a certain number of pages to DDR DRAM, it demotes the
same number of pages to CXL DRAM.
Between ANB and DAMON, DAMON provides the high-

est performance improvement. DAMON offers 6% and 81%
higher performance than ANB and no page migration, re-
spectively. Since we provide M5-manager as a sample policy
to demonstrate the efficacy of HPT and HWT, we choose
𝑦 = 𝑥𝑛 for fscale() and do not use any adaptive algorithm
to determine f_default for a given benchmark (i.e., out of
our intended scope). For this evaluation, we simply try a few
reasonable values of 𝑛 (e.g., 3 to 6) and f_default (e.g., 1),
and then choose the best performance, which shows 14%
and 106% higher performance than DAMON and no page
migration, respectively. The performance improvement of
M5 over ANB and DAMON comes from two aspects of M5:
(1) it incurs a much lower cost for identifying hot pages
and (2) it identifies hotter pages than ANB and DAMON.
Especially, the performance improvement of Redis is 10%
and 43% compared to ANB and DAMON, respectively, when
we detect hot pages based on HWT-driven Nominator (M5
(HWT)), as M5 chooses more useful hot pages than ANB and
DAMON with virtually no performance cost.

Note that ANB and M5 improve the performance of Redis
by 8% and 18-19%, respectively, whereas DAMON degrades
the performance by 16%. This is because DAMON continues
to scan PTEs even after page migration reaches an equi-
librium state (i.e., when the given DDR DRAM capacity is
fully occupied), despite further migration providing little

performance improvement due to Redis’ uniform random
memory accesses. Meanwhile, we observe that ANB rarely
unmaps pages at this state (i.e., incurring little performance
overhead for identifying hot pages). This also explains why
M5 outperforms DAMON, reemphasizing the importance
of minimizing performance overhead when identifying hot
pages.
Figure 10 plots the distribution of access counts of all

pages in each benchmark, collected with PAC. This partially
explains why M5 provides 24% and 14% higher performance
thanANB andDAMON, respectively, for Liblinear, with no
improvement in PageRank compared to ANB and DAMON.
The access is more skewed in the case of Liblinear, which
rewards M5 for migrating hot pages more precisely. This also
explains why M5 delivers 96% and 30% higher performance
than ANB and DAMON, respectively, for roms_r, showing
superior improvement over the other SPECrate benchmarks.
As shown, the p90, p95, and p99 pages of roms_r are 2×, 8×,
17×more frequently accessed than the p50 page, respectively.

In contrast, other benchmarks exhibit similar levels of
hotness across pages. For instance, once approximately the
top p50 hot page in TC are migrated to DDR DRAM, the
bottom p50 page has only 288 more accesses than that of
the bottom p10 page on average. This is not enough of the
number of accesses to amortize the cost of page migration
(∼54𝜇𝑠 in our setup), which requires more than 318 accesses
(= 54𝜇𝑠/(270𝑛𝑠 - 100𝑛𝑠)) on average. For such applications,
we should conservatively migrate pages to DDR DRAM after
enough pages are migrated to occupy a given capacity of
DDR DRAM, as the cost of page migration may outweigh
the benefit.

8 Discussion
Scalability of the top-𝐾 tracker based on CM-Sketch.
As the capacity of CXL memory and the overall memory
footprint of applications increase, the address cardinality
(i.e., the number of unique addresses) increases. This may
increase collisions in the CM-Sketch unit’s entries, each es-
timating (or tracking) the number of accesses to a given
address, and thus decrease the accuracy of the top-𝐾 tracker.
Figure 11 shows the preciseness of the top-𝐾 trackers with
32K CM-Sketch entries as the memory footprint increases.

0.5
1

1.5
2

2.5
3

3.5
4

lib. bc bfs cc pr sssp tc cactu. foto. mcf roms redis mean

N
or

m
. P

er
fo

rm
an

ce

ANB DAMON M5(HPT) M5(HWT) M5(HPT+HWT)

Figure 9. Performance of DAMON and M5 normalized to that of no page migration. ‘HPT,’ ‘HWT,’ and ‘HPT+HWT’ denote
HPT-only, HWT-driven, and HPT-driven Nominator configurations.

615

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

0.0

0.2

0.4

0.6

0.8

1.0
lib. bc bfs cc pr tc sssp

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0
mcf cactu. roms foto. redis

Log10(Access count)

C
D

F

Figure 10. Distribution of access counts per 4KB page.

0

0.2

0.4

0.6

0.8

1

x1 x2 x4 x8 x16 x32 x64

mcf roms fotonik cactuBSSN

Number of processes

A
cc

u
ra

cy
 (

co
m

p
ar

ed
 t

o
 P

A
C

)

Figure 11. Accuracy of CM-Sketch with 32K entries as the
working set size increases.

We increase the memory footprint of mcf_r, cactuBSSN_r,
fotonik3d_r, and roms_r by increasing the number of co-
running instances (or processes), each using a unique range
of physical addresses. The 32 processes of these benchmarks
demand 20GB to 27GB of memory capacity. This shows that
the preciseness of the top-𝐾 tracker decreases gracefully as
the memory footprint increases. The top-𝐾 tracker based on
CM-Sketch consumes a small amount of chip space, even
for 32K entries, accounting for only 0.01% of the total chip
space of all DRAM dies in an 8GB DRAM module. Therefore,
for a larger DRAM capacity, we may increase the number
of CM-Sketch entries to 128K (Table 4). If we need more
than 128K CM-Sketch entries, we may increase the number
of top-𝐾 tracker instances, each paired with a DRAM rank
or module [57]. Nonetheless, we conservatively expect that
the chip sapce per GB for the top-𝐾 tracker remains mostly
constant.
Hot huge pages. The evaluated benchmarks in this work
do not allocate huge pages. For applications allocating 2MB
huge pages, we can extendM5 to track hot 2M page addresses

using hot 4KB page addresses from HPT, as we identify hot
4KB page addresses from the hot 64B word addresses (§5.2).
Alternatively, we can deploy another HPT modified to track
hot page addresses in 2MB granularity. In both approaches,
M5 needs to consult with the OS to check whether these
page addresses belong to allocated huge pages.

9 Related Work
Hardware-assisted hot-page detection. A large body of
prior work has proposed hardware-assisted mechanisms for
identifying hot pages (e.g., MemPod [51], PoM [60], SILC-
FM [56], and HoPP [33]). However, these mechanisms are
often tightly integrated with the CPU architecture, demand-
ing changes in the CPU’s memory subsystem, such as DRAM
controllers. Notably, PoM and SILC-FM specifically target
the CPU with 3D-stacked DRAM. In contrast, M5 exploits
the unique properties of commodity CXL devices built on an
industry-standard interface to the CPU. As such, M5 is de-
coupled from the specific generations of CPU architectures,
facilitating the evaluation of page-migration solutions with
commodity servers, making it more practical and adoptable.
A recent study [74] explores Intel Flat Memory Mode

(IFMM) [39], where DDR memory acts as an exclusive cache
for CXL memory. When a CXL memory address is accessed,
the memory controller swaps a 64B word at the CXL mem-
ory address with a 64B word at the one-to-one mapped DDR
memory address. This eliminates the expensive operations
needed for page migration, shooting down TLB entries, up-
dating page table entries, and copying entire 4KB pages,
especially for sparse hot pages. However, IFMM is limited to
the case where local DDR memory and remote CXL memory
have the same capacity because of the one-to-one mapping
between CXL and DDR memory addresses for swapping.
Therefore, M5 can be synergistically used with IFMM when
remote CXL DRAM is larger than local DDR DRAM. For
example, IFMM can migrate hot words in sparse pages to
DDR DRAM while M5 can migrate hot dense pages to DDR
DRAM.

We recognize that the latest work, NeoMem, on tracking
hot pages in the CXL controller [75] as concurrent work. It
shares one of the observations we have made in this work—
high cost of identifying hot pages—and then proposes a CM-
Sketch-based top-𝐾 tracker to tackle this challenge. How-
ever, in contrast to NeoMem, we also present PAC and WAC,
which have enabled us to precisely evaluate the access-count
ratio of identified hot pages, thereby assessing the usefulness
of hot pages identified not only by the latest CPU-driven
page migration solutions but also by M5. Lastly, NeoMem
does not track hot-word addresses, while M5 does.
Hot-value tracking algorithms. Identifying frequently
accessed (hot) values in a time- and space-efficient way is
a problem that has been extensively studied. Sketch [50],
Bloom filter [37], cuckoo filter [17], and HyperLogLog [19]

616

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

have been applied in multiple applications, including heavy-
hitter detection and packet filtering in networking flows [3,
47], data analytics [9, 13], key-value data store [34, 73], and
genomic analysis in computational biology [29]. In this work,
we repurposed CM-Sketch, a streaming algorithm, to track
hot page and word addresses for a tiered-memory system.

10 Conclusion
To tackle the challenges of effectivelymanaging tiered-memory
systems, first, this work proposed a CXL-driven, hardware-
assisted profiling solution that leverages the unique capa-
bilities of an FPGA-based CXL device. Second, this work
showed that CPU-driven page-migration solutions often not
only classify warm pages as hot pages—many of which may
also be sparse—but also incur notable performance over-
head. Lastly, this work presented M5, a platform for devel-
oping CXL-driven page-migration solutions. M5 provides
hardware-based hot page and word trackers in the CXL con-
troller, along with software interfaces and guidelines for
designing effective migration policies. Our evaluation has
demonstrated that M5 can identify useful hot pages more
precisely than the CPU-driven page migration solutions,
with virtually no performance overhead, leading to higher
application performance.

Acknowledgments
This work was supported in part by a grant from PRISM,
one of the seven centers in JUMP 2.0, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA, by
a National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2024-00405857),
by the MSIT, Korea, under the Global Scholars Invitation
Program (RS-2024-00456287) supervised by the IITP, by the
Samsung Electronics, and by a generous gift from Intel Corp.

A Artifact Appendix
A.1 Abstract
The artifact includes the source code of M5 which is com-
posed of PAC (PageAccess Counter), HPT (Hot Page Tracker),
HWT (Hot Word Tracker), the userspace M5-manager, and
finally the kernel changes involved to support M5. Its goal
is to reproduce the results of Figure 8, 9, and 10 in the pa-
per comparing with Automatic NUMA Balancing (ANB) and
DAMON. The artifact also contains instructions and scripts
for setting up a system and conducting experiments.

A.2 Artifact check-list (meta-information)
• Program: Four benchmarks from SPECrate CPU 2017
(505.mcf_r, 507.cactuBSSN_r, 549.roms_r, and 554.roms_r),
Redis version 6.0.16, Liblinear version 2.47, andGAPBench-
mark Suite (BFS, SSSP, PR, CC, BC, and TC). The details of
benchmarks are described in Table 3 in the paper. All bench-
marks are public.

• Compilation: gcc-11.4 for M5 and ANB, and DAMON.
The FPGA project is compiled with Intel Quartus Prime
v23.2.

• Data set: We use the YCSB-A [11] workload and the KDD
2012 [35] for Redis and Liblinear, respectively, while Twit-
ter [30] and Google [1] as inputs for GAP.

• Run-time environment: M5 with Linux kernel version
6.5, ANB with Linux kernel version 5.19, and DAMON runs
with the Linux kernel version 6.11.

• Hardware: Intel Xeon Scalable processor supporting CXL
and an Intel Agilex 7 I-series FPGA, version R1BES, listed in
Table 2.

• Run-time state: An idle system.
• Metrics: The access count ratio is reported from the experi-
ment of Figure 8. YCSB running with Redis reports the 99th
percentile latency in nanoseconds. All the other benchmarks
in Figure 9 reports the execution time in seconds.

• Output: The experiment scripts output the result to text
files. Figures 8, 9, and 10 show the expected results.

• Experiments Figure 8: The experiment compares the track-
ing accuracy of various tracking methods. We have each
scheme 1) detect hot pages, 2) retrieve access count for the
access to these hot pages, and 3) analyze how many times
they are accessed.

• Experiments Figure 9: The end-to-end performance eval-
uation for application in each scheme.

• Experiments Figure 10: We plot the access count for each
application in Figure 8, to draw a CDF plot of the access
count.

• Howmuchdisk space required (approximately)?: Around
20 GB for GAPBS graph data sets and 50 GB for SPEC 2017.
Finally, about 300 GB is required for storing the generated
results.

• How much time is needed to prepare workflow (ap-
proximately)?: About 3 hours.

• How much time is needed to complete experiments
(approximately)?: About 48 hours.

• Publicly available?: All software and hardware RTL are
available in https://github.com/ece-fast-lab/ASPLOS-25-M5.

• Code licenses (if publicly available)?: GPL 2.0
• Archived: https://zenodo.org/records/14303160

A.3 Description
A.3.1 How to access. The source code is provided at https:
//github.com/ece-fast-lab/ASPLOS-2025-M5. In the rest of
the section, repo refers to directory that holds the aforemen-
tioned GitHub repository. All benchmarks, except for SPEC
CPU2017, are publicly available:

• GAPBs: https://github.com/sbeamer/gapbs
• YCSB: https://github.com/brianfrankcooper/YCSB
• Liblinear: https://www.csie.ntu.edu.tw/~cjlin/liblinear/

A.4 Installation
A.4.1 Hardware. The following steps describe how to
configure the FPGA.

$ cd repo/hw

617

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://github.com/ece-fast-lab/ASPLOS-25-M5
https://zenodo.org/records/14303160
https://github.com/ece-fast-lab/ASPLOS-2025-M5
https://github.com/ece-fast-lab/ASPLOS-2025-M5
https://github.com/sbeamer/gapbs
https://github.com/brianfrankcooper/YCSB
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

$ bash program_fpga.sh bitstreams/m5_cm_banking.cdf
$ sudo poweroff
$ <Power on with BMC>
$ cd repo/setup
$ bash setup_m5.sh

A.4.2 Software. The repo provides one folder for each
tested kernel in repo/kernels. The file paths in setup_m5.sh
needs to be updated for the benchmark and binary paths.
Please refer to repo/README.md for compiling and switching
the kernel between tests.

A.5 Experiment workflow
A.5.1 Setup. This setup will setup the platform for testing.

• Kernel switch: Edit /etc/default/grub, and apply
the changes with update-grub.

• Program FPGA / Setup: Instructions listed in the
Section A.4.

A.5.2 Experiments. The experiments are embedded in
the provided scripts, and the input arguments depend on the
test case. Please refer to the testing_scripts/README.md
for more details. The data of Figure 10 is part of Figure 8.

$ cd repo/testing_scripts
$ bash fig8_eval_all.sh <arg>
$ bash fig9_eval_all.sh <arg>

The following steps describe how to parse and visual-
ize the results. All steps are performed in the directory
repo/results. The results will be stored in generated PDF
files.

$ bash organize_results.sh
$ bash parse_all_figs.sh
$ python3 plot_all_figs.py

A.6 Evaluation and expected results
The experiment in Figure 8 shows a high access count ra-
tio for the CM-sketch algorithm compared to the software
schemes.The end-to-end performance evaluation in Figure 9
shows M5 outperforms the software baselines by 14%. Fi-
nally, Figure 10 shows the access distribution of the tested
benchmarks.

References
[1] Abdullah T. Mughrabi. accessed in 2024. GraphBrew GAPBS.

https://github.com/UVA-LavaLab/GraphBrew.
[2] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian

Huang, Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu.
2019. FlatFlash: Exploiting the Byte-Accessibility of SSDs
within a Unified Memory-Storage Hierarchy. In Proceedings of
the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems.

[3] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. 2022. Het-
eroSketch: Coordinating Network-wide Monitoring in Hetero-
geneous and Dynamic Networks. In 19th USENIX Symposium
on Networked Systems Design and Implementation.

[4] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat:
Application-Transparent Page Management for Two-Tiered
Main Memory. In Proceedings of the 22nd International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems.

[5] Andrea Arcangeli. accessed in 2024. AutoNUMA.
https://blog.linuxplumbersconf .org/2012/wp-content/
uploads/2012/09/2012-lpc-virt-autonuma-arcangeli.pdf.

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015.
The GAP Benchmark Suite. CoRR abs/1508.03619 (2015).
arXiv:1508.03619 http://arxiv.org/abs/1508.03619

[7] Shai Bergman, Priyank Faldu, Boris Grot, Lluís Vilanova, and
Mark Silberstein. 2022. Reconsidering OS Memory Optimiza-
tions in the Presence of Disaggregated Memory. In Proceedings
of the 2022 ACM SIGPLAN International Symposium onMemory
Management. ACM, New York, NY, USA, 1–14.

[8] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap,
Hasan Al Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Re-
thinking Software Runtimes for Disaggregated Memory. In
Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems.

[9] Monica Chiosa, Thomas B. Preußer, and Gustavo Alonso. 2021.
SKT: A One-Pass Multi-Sketch Data Analytics Accelerator.
Proceedings of the VLDB Endowment 14, 11 (2021).

[10] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya
Gujja, Saurabh Sinha, Brian Cline, Chandarasekaran Rama-
murthy, and Greg Yeric. 2016. ASAP7: A 7-nm FinFET Pre-
dictive Process Design Kit. Microelectronics Journal 53 (2016),
105–115.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. 2010. Benchmarking Cloud Serving
Systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (Indianapolis, Indiana, USA).

[12] Graham Cormode and Shan Muthukrishnan. 2005. An Im-
proved Data Stream Summary: The Count-Min Sketch and Its
Applications. Journal of Algorithms 55, 1 (2005), 58–75.

[13] Michael Correll and Michael Gleicher. 2016. The Semantics of
Sketch: Flexibility In Visual Query Systems For Time Series
Data. In 2016 IEEE Conference on Visual Analytics Science and
Technology.

[14] CXL Consortium. accessed in 2025. Compute Express Link
(CXL).
https://www.computeexpresslink.org.

[15] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar,
David Culler, Zhiyi Xu, Jianing Fan, Christopher Kennelly,
Bill McCloskey, Danijela Mijailovic, Brian Morris, Chiranjit
Mukherjee, Jingliang Ren, Greg Thelen, Paul Turner, Car-
los Villavieja, Parthasarathy Ranganathan, and Amin Vah-
dat. 2023. Towards an Adaptable Systems Architecture for
Memory Tiering at Warehouse-Scale. In Proceedings of the
28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems.

[16] Cristian Estan and George Varghese. 2002. New Directions
in Traffic Measurement and Accounting. In Proceedings of the

618

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://github.com/UVA-LavaLab/GraphBrew
https://blog.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/2012-lpc-virt-autonuma-arcangeli.pdf
https://blog.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/2012-lpc-virt-autonuma-arcangeli.pdf
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://www.computeexpresslink.org

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

2002 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications. 323–336.

[17] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D
Mitzenmacher. 2014. Cuckoo Filter: Practically Better Than
Bloom. In Proceedings of the 10th ACM International on Con-
ference on emerging Networking Experiments and Technologies.
75–88.

[18] Vishal Gupta, Min Lee, and Karsten Schwan. 2015. HeteroVi-
sor: Exploiting Resource Heterogeneity to Enhance the Elas-
ticity of Cloud Platforms. In Proceedings of the 11th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments.

[19] Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. Hy-
perLogLog in Practice: Algorithmic Engineering of a State
of The Art Cardinality Estimation Algorithm. In Proceedings
of the 16th International Conference on Extending Database
Technology.

[20] Intel. accessed in 2024. Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B. https://
cdrdv2.intel.com/v1/dl/getContent/671427.

[21] Intel Corporation. accessed in 2023. Intel Xeon Gold 6430
Processor. https://ark.intel.com/content/www/us/en/ark/
products/231737/intel-xeon-gold-6430-processor-60m-
cache-2-10-ghz.html.

[22] Intel Corporation. accessed in 2023. Intel® Agilex™ 7 FPGA
I-Series Development Kit.
https://www.intel.com/content/www/us/en/products/
details/fpga/development-kits/agilex/i-series/dev-
agi027.html.

[23] Intel Corporation. accessed in 2024. Improving Real-Time
Performance by Utilizing Cache Allocation Technology.
https://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/cache-allocation-technology-
white-paper.pdf.

[24] Intel Corporation. accessed in 2024. Pin - A Dynamic Binary
Instrumentation Tool. https://www.intel.com/content/
www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html.

[25] Jonathan Corbet. accessed in 2024. Merging the multi-
generational LRU. https://lwn.net/Articles/894859/.

[26] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021.
Exploring the Design Space of Page Management for Multi-
Tiered Memory Systems. In 2021 USENIX Annual Technical
Conference.

[27] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju
Doh, Namhoon Kim, Tae Jun Ham, Jae W. Lee, and Jung
Ho Ahn. 2022. Mithril: Cooperative Row Hammer Protec-
tion on Commodity DRAM Leveraging Managed Refresh.
In 2022 IEEE International Symposium on High-Performance
Computer Architecture. 1156–1169. https://doi.org/10.1109/
HPCA53966.2022.00088

[28] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramula-
tor: A Fast and Extensible DRAM Simulator. IEEE Computer
Architecture Letters 15, 1 (2015), 45–49.

[29] Can Kockan, Kaiyuan Zhu, Natnatee Dokmai, Nikolai Karpov,
M Oguzhan Kulekci, David P Woodruff, and S Cenk Sahinalp.
2020. Sketching Algorithms for Genomic Data Analysis and
Querying in a Secure Enclave. Nature methods 17, 3 (2020).

[30] Haewoon Kwak, Changhyun Lee, Hosung Park, and SueMoon.
2010. What is Twitter, a Social Network or a News Media?.
In Proceedings of the 19th International Conference on World
Wide Web (Raleigh, North Carolina, USA). Association for
Computing Machinery, New York, NY, USA, 591–600. https:
//doi.org/10.1145/1772690.1772751

[31] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and
Young Ik Eom. 2023. MEMTIS: Efficient Memory Tiering with
Dynamic Page Classification and Page Size Determination.
In Proceedings of the 29th Symposium on Operating Systems
Principles.

[32] Yunjae Lee, Yoonhee Kim, and Heon Y. Yeom. 2020. Light-
weight Memory Tracing for Hot Data Identification. Cluster
Computing 23 (09 2020). https://doi.org/10.1007/s10586-020-
03130-1

[33] Haifeng Li, Ke Liu, Ting Liang, Zuojun Li, Tianyue Lu, Hui
Yuan, Yinben Xia, Yungang Bao, Mingyu Chen, and Yizhou
Shan. 2023. HoPP: Hardware-Software Co-Designed Page
Prefetching for Disaggregated Memory. In IEEE International
Symposium on High-Performance Computer Architecture.

[34] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong
Xu. 2019. ElasticBF: Elastic Bloom Filter with Hotness Aware-
ness for Boosting Read Performance in Large Key-Value Stores.
In 2019 USENIX Annual Technical Conference.

[35] Chih-Jen Lin. accessed in 2024. KDD CUP 2012 Dataset in
LIBSVM Format.
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
binary.html#kdd2012.

[36] Chih-Jen Lin. accessed in 2024. LIBLINEAR – A Library for
Large Linear Classification.
https://www.csie.ntu.edu.tw/~cjlin/liblinear/.

[37] Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich,
and Xueshan Luo. 2019. Optimizing Bloom Filter: Challenges,
Solutions, and Comparisons. IEEE Communications Surveys &
Tutorials 21, 2 (2019).

[38] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approxi-
mate Frequency Counts over Data Streams. In VLDB’02: Pro-
ceedings of the 28th International Conference on Very Large
Databases. Elsevier, 346–357.

[39] Manoj Sukumaran. accessed in 2024. Orchestrating
Memory Disaggregation with Compute Express Link.
https://www.intel.com/content/www/us/en/content-
details/817889/orchestrating-memory-disaggregation-with-
compute-express-link.html.

[40] MicheleMarazzi, Patrick Jattke, Flavien Solt, and Kaveh Razavi.
2022. PROTRR: Principled yet Optimal In-DRAM Target Row
Refresh. In Proceedings of the IEEE Symposium on Security and
Privacy.

[41] Adnan Maruf, Ashikee Ghosh, Janki Bhimani, Daniel
Campello, Andy Rudoff, and Raju Rangaswami. 2022. MULTI-
CLOCK: Dynamic Tiering for Hybrid Memory Systems. In
IEEE International Symposium on High-Performance Computer
Architecture.

[42] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes
Weiner, Niket Agarwal, Pallab Bhattacharya, Chris Pe-
tersen, Mosharaf Chowdhury, Shobhit Kanaujia, and Prakash
Chauhan. 2023. TPP: Transparent Page Placement for CXL-
Enabled Tiered-Memory. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming

619

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://cdrdv2.intel.com/v1/dl/getContent/671427
https://cdrdv2.intel.com/v1/dl/getContent/671427
https://ark.intel.com/content/www/us/en/ark/products/231737/intel-xeon-gold-6430-processor-60m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231737/intel-xeon-gold-6430-processor-60m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231737/intel-xeon-gold-6430-processor-60m-cache-2-10-ghz.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://lwn.net/Articles/894859/
https://doi.org/10.1109/HPCA53966.2022.00088
https://doi.org/10.1109/HPCA53966.2022.00088
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1007/s10586-020-03130-1
https://doi.org/10.1007/s10586-020-03130-1
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.intel.com/content/www/us/en/content-details/817889/orchestrating-memory-disaggregation-with-compute-express-link.html
https://www.intel.com/content/www/us/en/content-details/817889/orchestrating-memory-disaggregation-with-compute-express-link.html
https://www.intel.com/content/www/us/en/content-details/817889/orchestrating-memory-disaggregation-with-compute-express-link.html

M5: Mastering Page Migration and Mem Management for CXL-based Tiered Mem Sys ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Languages and Operating Systems.
[43] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.

2005. Efficient Computation of Frequent and Top-k Elements
in Data Streams. In Proceedings of the 10th International Con-
ference on Database Theory. Springer, 398–412.

[44] Michael Larabel. accessed in 2024. MGLRU Continues To
Look Very Promising For Linux Kernel Performance. https:
//www.phoronix.com/news/Linux-MGLRU-v9-Promising.

[45] Shanmugavelayutham Muthukrishnan. 2005. Data Streams:
Algorithms and Applications. Foundations and Trends® in
Theoretical Computer Science (2005).

[46] Alan Nair, Sandeep Kumar, Aravinda Prasad, Ying Huang,
Andy Rudoff, and Sreenivas Subramoney. 2024. Telescope:
Telemetry for Gargantuan Memory Footprint Applications. In
Proceedings of the 2024 USENIX Conference on Usenix Annual
Technical Conference.

[47] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and
Peter Steenkiste. 2023. Sketchovsky: Enabling Ensembles of
Sketches on Programmable Switches. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation.

[48] SeongJae Park. accessed in 2024. DAMON: Data Access Moni-
tor.
https://sjp38.github.io/post/damon/.

[49] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung
Ho Ahn, and Jae W. Lee. 2020. Graphene: Strong yet Light-
weight Row Hammer Protection. In Proceedings of the 53rd
IEEE/ACM International Symposium on Microarchitecture.

[50] Mert Pilanci and Martin J. Wainwright. 2017. Newton Sketch:
A Near Linear-Time Optimization Algorithm with Linear-
Quadratic Convergence. SIAM Journal on Optimization 27, 1
(2017).

[51] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena,
Gabriel Loh, and Dean M. Tullsen. 2017. MemPod: A Clustered
Architecture for Efficient and Scalable Migration in Flat Ad-
dress Space Multi-level Memories. In 2017 IEEE International
Symposium on High Performance Computer Architecture.

[52] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seung-
won Min, Amna Masood, Jeongmin Park, Jinjun Xiong, C. J.
Newburn, Dmitri Vainbrand, I-Hsin Chung, Michael Garland,
William Dally, and Wen-mei Hwu. 2023. GPU-Initiated On-
Demand High-Throughput Storage Access in the BaM System
Architecture. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, Volume 2.

[53] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and
Simon Peter. 2021. HeMem: Scalable Tiered Memory Manage-
ment for Big Data Applications and Real NVM. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems
Principles.

[54] Redis Ltd. accessed in 2023. Redis.
https://redis.io/.

[55] Jie Ren, Dong Xu, Junhee Ryu, Kwangsik Shin, Daewoo Kim,
and Dong Li. 2024. MTM: Rethinking Memory Profiling and
Migration for Multi-Tiered Large Memory. In Proceedings of
the 19th European Conference on Computer Systems.

[56] Jee Ho Ryoo, Mitesh R. Meswani, Andreas Prodromou, and
Lizy K. John. 2017. SILC-FM: Subblocked InterLeaved Cache-
Like Flat Memory Organization. In 2017 IEEE International
Symposium on High Performance Computer Architecture.

[57] Samir Rajadnya, Durgesh Srivastava. accessed
in 2024. CMS: Hotness Tracking Requirements.
https://www.opencompute.org/documents/ocp-cms-
hotness-tracking-requirements-white-paper-pdf-1.

[58] Debendra Das Sharma. 2022. Compute Express Link (CXL):
Enabling Heterogeneous Data-Centric Computing With Het-
erogeneous Memory Hierarchy. IEEE Micro (2022). https:
//doi.org/10.1109/MM.2022.3228561

[59] Sebastian Andrzej Siewior, Rusty Russell, Srivatsa Vaddagiri,
Ashok Raj, Joel Schopp, and Thomas Gleixner. accessed in
2024. CPU hotplug in the Kernel. https://docs.kernel.org/core-
api/cpu_hotplug.html.

[60] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, Chris
Wilkerson, and Hyesoon Kim. 2014. Transparent Hardware
Management of Stacked DRAM as Part of Memory. In 47th
Annual IEEE/ACM International Symposium on Microarchitec-
ture.

[61] Standard Performance Evaluation Corporation. accessed
in 2024. SPEC CPU2017 Benchmark Suites. https://
www.spec.org/cpu2017/.

[62] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song,
Jinghan Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou,
Ipoom Jeong, Ren Wang, Jung Ho Ahn, Tianyin Xu, and
Nam Sung Kim. 2023. Demystifying CXL Memory with Gen-
uine CXL-Ready Systems and Devices. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microar-
chitecture.

[63] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui
Yang, Hao Xiang, Tongping Liu, Jiaxin Shan, Ruoyun Huang,
Cheng Zhao, Cheng Chen, Hui Zhang, Fei Liu, Shuai Zhang,
Xiaoning Ding, and Jianjun Chen. 2024. Exploring Perfor-
mance and Cost Optimization with ASIC-Based CXL Memory.
In Proceedings of the Nineteenth European Conference on Com-
puter Systems. New York, NY, USA.

[64] Vinicius Petrucci, Eishan Mirakhur, Rita Gupta, Mahesh
Wagh, Nikesh Agarwal, Su Wei Lim, Vishal Tanna. accessed
in 2025. CXL Memory Expansion: A Closer Look on Actual
Platform. https://www.micron.com/content/dam/micron/
global/public/products/white-paper/cxl-memory-expansion-
a-close-look-on-actual-platform.pdf.

[65] Vishal Verma. accessed in 2024. Tiering-0.8.
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/
tiering.git/log/?h=tiering-0.8.

[66] Hao Wang, Chang-Jae Park, Gyung-su Byun, Jung Ho Ahn,
and Nam Sung Kim. 2015. Alloy: Parallel-Serial Memory Chan-
nel Architecture for Single-Chip Heterogeneous Processor Sys-
tems. In IEEE International Symposium on High Performance
Computer Architecture.

[67] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan
Yuan, and Ren Wang. 2024. NOMAD: Non-Exclusive Memory
Tiering via Transactional Page Migration. In Proceedings of
the 18th USENIX Conference on Operating Systems Design and
Implementation.

[68] Zi Yan, Daniel Lustig, David Nellans, andAbhishek Bhattachar-
jee. 2019. Nimble Page Management for Tiered Memory Sys-
tems. In Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems.

620

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://www.phoronix.com/news/Linux-MGLRU-v9-Promising
https://www.phoronix.com/news/Linux-MGLRU-v9-Promising
https://sjp38.github.io/post/damon/
https://redis.io/
https://www.opencompute.org/documents/ocp-cms-hotness-tracking-requirements-white-paper-pdf-1
https://www.opencompute.org/documents/ocp-cms-hotness-tracking-requirements-white-paper-pdf-1
https://doi.org/10.1109/MM.2022.3228561
https://doi.org/10.1109/MM.2022.3228561
https://docs.kernel.org/core-api/cpu_hotplug.html
https://docs.kernel.org/core-api/cpu_hotplug.html
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/log/?h=tiering-0.8
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/log/?h=tiering-0.8

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yan Sun et al.

[69] Ying Huang. accessed in 2024. Memory Tiering:
Hot Page Selection with Hint Page Fault Latency.
https://patchwork.kernel.org/project/linux-mm/patch/
20210722031819.3446711-5-ying.huang@intel.com/.

[70] Jung. H. Yoon. 2015. 3D NAND Technology: Implications to
Enterprise Storage Applications. In Proceedings of the Flash
Memory Summit (FMS’15).

[71] Yu Zhao. accessed in 2024. Java / POWER9 Bench-
mark with MGLRU. https://lore.kernel.org/lkml/
20221221000748.1374772-1-yuzhao@google.com/.

[72] Yu Zhao. accessed in 2024. Multi-Gen LRU Frame-
work. https://lore.kernel.org/lkml/20220614071650.206064-
1-yuzhao@google.com/l.

[73] Weitao Zhang, Yinlong Xu, Yongkun Li, Yueming Zhang, and
Dinglong Li. 2018. FlameDB: A Key-Value StoreWith Grouped

Level Structure and Heterogeneous Bloom Filter. IEEE Access
(2018).

[74] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, RyanWee,
Ishwar Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar,
Mark D. Hill, Mosharaf Chowdhury, and Asaf Cidon. 2024.
Managing Memory Tiers with CXL in Virtualized Environ-
ments. In 18th USENIX Symposium on Operating Systems De-
sign and Implementation.

[75] Zhe Zhou, Yiqi Chen, Tao Zhang, Yang Wang, Ran Shu, Shuo-
tao Xu, Peng Cheng, Lei Qu, Yongqiang Xiong, Jie Zhang,
and Guangyu Sun. 2024. NeoMem: Hardware/Software Co-
Design for CXL-Native Memory Tiering. In 57th IEEE/ACM
International Symposium on Microarchitecture.

621

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://patchwork.kernel.org/project/linux-mm/patch/20210722031819.3446711-5-ying.huang@intel.com/
https://patchwork.kernel.org/project/linux-mm/patch/20210722031819.3446711-5-ying.huang@intel.com/
https://lore.kernel.org/lkml/20221221000748.1374772-1-yuzhao@google.com/
https://lore.kernel.org/lkml/20221221000748.1374772-1-yuzhao@google.com/
https://lore.kernel.org/lkml/20220614071650.206064-1-yuzhao@google.com/l
https://lore.kernel.org/lkml/20220614071650.206064-1-yuzhao@google.com/l

	Abstract
	1 Introduction
	2 Background
	2.1 CPU-driven Page Migration Solutions
	2.2 CXL Memory

	3 CXL-driven Page and Word Access Counting
	4 Usefulness and Cost of CPU-driven Page Migration Solutions
	4.1 Usefulness of Identified Hot Pages
	4.2 Performance Cost of Identifying Hot Pages

	5 M5: Track, Filter, and Migrate
	5.1 HPT and HWT
	5.2 Manager

	6 Evaluation Setup
	7 Evaluation
	7.1 Design Space Exploration of Top-K Trackers
	7.2 Full-System Comparison

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

