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Abstract—Expensive page table walks triggered by frequent
TLB misses have incurred major performance bottlenecks for
data-intensive workloads that are dominated by memory accesses
with weak locality. Since it is hard to reduce TLB misses
for such workloads, reducing page table walk overhead (i.e.,
the overhead of each TLB miss) is an increasingly important
direction for improving application performance. The direction
is more compelling for workloads running in virtual machines
(VMs). In virtualized environments, each TLB miss triggers a
two-dimensional page table walk, which has a significantly higher
overhead than that on native systems.

This paper presents HUGEGPT, a software approach to
reducing two-dimensional page table walk overhead in virtualized
environments. HUGEGPT ensures that page tables used in guest
systems are physically held in the huge pages formed in the host.
This brings two-fold benefits: 1) the number of steps walking
down the host page table is reduced; 2) the misses of page walk
caches incurred by accessing the leaf nodes on host page tables
can be eliminated. Extensive evaluation based on the prototype
implementation and diverse real-world applications shows that
HUGEGPT can efficiently reduce address translation overhead
and improve application performance in virtualized clouds.

Index Terms—Virtualization, Memory Management, Page Ta-
bles, Operating Systems, TLB

I. Introduction
TLB misses have become the major performance bottle-

neck for the workloads with big memory footprints [1]–[17].

Previous works [1], [18], [19] show that performance of big

memory workloads can be degraded by as much as 50% due

to the high overhead incurred by TLB misses. This problem

becomes more pronounced in clouds and may keep increasing

in future computer systems. In clouds, hardware supported

memory virtualization (i.e., nested paging such as Intel ex-

tended page tables [20] and AMD nested page tables [21])

enables two-dimensional page walk to resolve TLB misses.

This increases the TLB miss overhead by up to 6x [10], [19],

[20]. With the upcoming 5-level page tables [22], [23], this

increase is more than 8x.

Reducing the overhead incurred by TLB misses heavily

relies on the hardware designs in memory management units

(MMUs). Thus, existing research mostly concentrates on new

hardware designs, which reduce either the number of TLB

misses [1], [3], [6]–[8], [10], [11], [13], [18], [24]–[37] or the

overhead of each TLB miss [19], [38].

It usually takes a long time before new hardware designs

become available in real systems. Thus, to reduce address
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translation overhead on existing hardware, the mainstream

approach is to use huge pages (e.g., 2MB page) [3], [6], [13],

[15]–[17], [32]. A TLB entry buffering the address mapping

for a huge page has a much larger coverage than that for

a base page (4KB page) — with an entry for a huge page,

accessing any addresses within this huge page will not incur

TLB misses. With the larger coverage, TLB misses may be

significantly reduced and address translations are accelerated.

Though using huge pages proves to be very effective for the

data accesses with strong locality (e.g., accesses repeatedly

hitting the same huge page), it is usually considered to be

ineffective in accelerating the address translation for the ac-

cesses with weak locality. For example, huge pages can hardly

reduce TLB misses for random or quasi-random accesses (e.g.,

modern applications like graph computing) that seldom hit the

same huge page. For data with weak locality, using huge pages

is even considered to be harmful due to increased memory

fragmentation and false sharing [39], [40].

In this paper, we show that actually huge pages can be

used to effectively accelerate address translation for weak

locality data and the adverse effect is minimal. We achieve

this by using huge pages in a substantially different way from

conventional huge page approaches. We name our approach

HUGEGPT. While conventional approaches use huge pages to

reduce TLB misses, for the effectiveness on weak locality data,

HUGEGPT “exploits” a different capability of huge pages —

their capability to substantially reduce the overhead of the two-

dimensional page walk, i.e., the overhead of each TLB miss

in virtualized clouds. While conventional approaches use huge

pages to save data, HUGEGPT uses huge pages to save meta
data — the page tables used in the guest OS to manage the

memory of a VM. Thus, HUGEGPT does not incur the adverse

effects that are caused by conventional approaches through

saving weak locality data on huge pages.

Our insight is that most overhead in a two-dimensional page

walk is incurred by walking down the host page table to

resolve the entry addresses of the guest page table. This can

be illustrated using Figure 1 (a), which shows that a two-

dimensional page walk may incur as many as 24 memory

accesses. Among these memory accesses, 16 are incurred by

resolving the entry addresses of the guest page table, i.e., 1∼4

for resolving gL4 of the guest page table, 6∼9 for resolving

gL3, 11∼14 for gL2, and 16∼19 for gL1.

Based on our insight, to reduce the overhead of two-

dimensional page walk, the most effective method is to reduce
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the overhead incurred by resolving the entry addresses of

the guest page table. We propose HUGEGPT as a software

approach to save guest page tables into host huge pages. This

can reduce this overhead in two ways, as shown by the steps

that are crossed out in Figure 1 (b). First, it eliminates most

page walk cache (PWC) misses. There is no need to buffer

crossed out steps in page walk caches. This not only eliminates

the PWC misses caused by these steps but also reduces the

pressure of PWCs on buffering other steps. Second, it reduces

the steps to walk down the host page table upon a PWC miss

at an earlier step. For example, upon a PWC miss at Step 12,

in Figure 1 (a) 3 steps (i.e., Step 12, Step 13, and Step 14)

are required to get the address of gL2; in Figure 1 (b), only

2 steps (i.e., Step 12 and Step 13) are required.

To realize HUGEGPT, our basic idea is to let guest OS

notify host OS only to store guest page tables on host

huge pages. In the default virtualized system, page faults for

allocating guest page table pages at the guest level need to trap

to the host level and allocate the host physical pages to back

the guest page table pages. Taking this opportunity, HUGEGPT

allocates host huge pages to back the guest page table pages.

To store guest page tables on host huge pages, the host

needs to allocate huge pages to back guest physical memory

regions that store guest page table data. There are two technical

challenges to achieving it.

The first challenge is how to filter out guest page table data

and store it on specific guest physical memory regions at the

guest level. The guest memory allocator does not distinguish

memory allocations for guest page table data and other ap-

plication/system data, such that guest page table pages are

mixed with other application/system data pages and randomly

scattered in the guest physical memory space. To address this

challenge, HUGEGPT modifies the guest memory subsystem

to filter out memory allocations for guest page table data and

allocate huge page sized guest physical memory regions to

store the guest page table data.

The second challenge is how to identify the guest physical

memory regions that store the guest page table data at the

host level. To back guest page tables with host huge pages,

the host needs to figure out the guest physical memory regions

that store guest page table data and create host huge pages to

back these regions. However, due to the semantic gap between

the guest and the host, the host memory allocator cannot figure

out the guest physical memory regions that are used to store

guest page table data. To address this challenge, HUGEGPT

marks all huge page sized guest physical memory regions that

store guest page table data, such that the host can form host

huge pages based on these guest physical memory regions

upon the first page faults on these regions.

The paper makes the following contributions. First, to our

best knowledge, this is the first work that studies how to

store guest page table data on host huge pages to accelerate

two-dimensional page walks in virtualized clouds. Second,

we have proposed HUGEGPT as an efficient system so-

lution that can effectively reduce page walk cache misses

and the steps to walk the two-dimensional page tables for
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Fig. 1: The proposed approach can substantially reduce page walk latency
of the two-dimensional page walks because the lower level page table
entries shaded in the figure are usually cached by TLB and page walk
caches. The proposed approach slightly changes the software, i.e., only
storing guest page table data on host huge pages.

workloads with weak memory access locality. Finally, we

have implemented HUGEGPT based on Linux/KVM, tested it

with diverse real-world applications and extensive experiments

comprehensively, and also compared HUGEGPT with related

systems. Our tests show HUGEGPT can greatly reduce two-

dimensional page walk overhead, resulting in up to 50%

application performance improvement compared to vanilla

Linux/KVM. HUGEGPT also performs better than related

systems (confirmed in §VI-D).

II. Background and Motivation
This section first introduces how the two-dimensional page

walk works (§II-A). Then, it explains why the two-dimensional

page walk is inefficient and experimentally confirms that the

inefficiency can greatly increase average page walk latency and

reduce application performance in virtualized clouds (§II-B).

A. Hardware Supported Memory Virtualization

In the native system, the page walker walks the page table to

translate the virtual address to the physical address upon a TLB

miss. The translation requires up to four memory references

for the 4-level x86 page table structure, which is used by most

modern architectures. In the virtualized system, the hardware

supported memory virtualization, i.e., nested paging such as

Intel extended page table (Intel EPT [20]) and AMD nested

page table (AMD NPT [21]), enables the two-dimensional

page translation.

Figure 1 (a) shows how the two-dimensional page translation

works. The two-dimensional page translation needs to walk

two page tables (the guest/host page table maintained by the

guest/host OS) to translate a guest virtual address (GVA) of

an application running in the guest level to its corresponding

host physical address (i.e., the real physical address) in the host

level. Specifically, the guest page table and the host page table

are first used to translate the guest virtual address (GVA) to the

guest physical address (GPA) in the guest level (Step 1-20). To
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obtain the GPA of the GVA, the page walker needs to walk the

host page table to obtain the guest page table entries’ (gL4,

gL3, gL2, and gL1 in Figure 1 (a)) host physical addresses

(Step 1-4, 6-9, 11-14, and 16-19 in Figure 1 (a)). Finally, the

GPA of the GVA is translated to the final HPA by walking the

host page table (Step 21-24 in Figure 1 (a)). Since the guest

page table and the host page table are both 4-level page table

structures, the two-dimensional page translation requires up to

24 memory references [19], [41], [42].

As today’s data-intensive applications are pervasive and

usually need large memory space to hold their working set,

Intel releases the design of 5-level page table [23], which

significantly increases the addressable memory [22]. With such

5-level page table structure, a two-dimensional page translation

requires up to 35 memory references. This further exacerbates

the address translation overhead in virtualized clouds.

B. Inefficient Two Dimensional Page Walk

In modern systems architecture, TLB capacity cannot scale

at the same rate as memory capacity. TLB misses and address

translation overhead have become a major performance bot-

tleneck for workloads with weak memory access locality [1],

[4], [5], [43]. This problem becomes even more pronounced

in virtualization environments, as a TLB miss needs to walk

through two layers of page tables, and the cost can be 6x as

much as walking through one layer of page table in native

environments [10], [20], as introduced in §II-A.

Existing research proposals on reducing address translation

overhead mainly fall into two categories: reducing TLB misses

and their overhead for applications with strong locality [1],

[24], [25], and reducing page walk cache misses and their

overhead for applications with weak locality [38], [44], as

summarized in Table I. HUGEGPT falls into the second

category. In this category, existing works need to modify

hardware [19], [38], [42], [44]. For instance, FPT [38] flattens

the page table through merging adjacent layers of the page

table. For x86 4-level page table, it flattens the page global

directory and the page upper directory, as well as the page

middle directory and the page table entry, thereby translating

18 bits in a single memory access instead of the traditional 9

bits each in two memory accesses. It changes the page table

structure and the page table walker to implement the flattened

page tables. Commodity cloud servers are hard to integrate

the approaches that need to modify the hardware in the near

future. Therefore, we pursue a software solution that does not

need to modify hardware and incur high overhead.

To illustrate the problem, we designed and implemented two

micro-benchmarks. The first micro-benchmark shows almost

no memory access locality. The micro-benchmark randomly

accesses the memory with a total size of 50GB, 100GB,

and 200GB, respectively. The second micro-benchmark shows

weak spatial locality, a better locality than the first micro-

benchmark. It accesses each 4KB memory page once with the

same different working set sizes as those in the first micro-

benchmark. We follow the same approach in the previous

work [47] to generate workloads with weak memory access
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Fig. 2: Throughputs of native system, and HUGEGPT. Throughputs are
normalized to vanilla Linux/KVM.
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Fig. 3: Average page walk latency of native system and HUGEGPT.
Average page walk latencies are normalized to vanilla Linux/KVM.

Workload
locality

High
level idea

Previous
works

Hardware
approaches

Software
approaches

Strong
locality

Reducing TLB misses

ASAP [1],
POM-TLB [24],
CA-paging [45],

RMM [25]

Gemini [46],
Transparent

Huge Page [3], [32]

Weak
locality

Reducing page walk
cache (PWC) misses

FPT [38],
Compendia [44]

Our proposed
approach

(HUGEGPT)

TABLE I: A summary of related works based on the locality of workload
memory access patterns. Please note that transparent huge pages are
usually used to store application data on huge pages, so as to reduce
TLB misses and their overhead.

locality. To measure micro-benchmarks’ throughputs, we mea-

sure the memory accesses performed per second.

Figure 2 shows the throughputs of the two micro-

benchmarks when they are tested with native system, vanilla

Linux/KVM, and HUGEGPT, respectively. HUGEGPT offers

44% more throughput compared to vanilla Linux/KVM on

average. This shows the inefficiency of the two-dimensional

page walk used by vanilla Linux/KVM. Compared to the one-

level page walk used in the native environments, the ineffi-

ciency of two-dimensional page walk becomes even worse. To

further understand the inefficiency, we profile the average page

walk latency of the three systems. We show the test results

in Figure 3. Compared to vanilla Linux/KVM, HUGEGPT

reduces the average page walk latency by 41% for workload

with weak memory access locality and 14% for workload with

almost no memory access locality on average.

III. Main Idea and Technical Challenges
As explained and confirmed in §II, two-dimensional page

walk used by vanilla Linux/KVM incurs much longer average

page walk latency compared to the one-level page walk used
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in native system. The reason is that vanilla Linux/KVM incurs

more page walk cache misses and steps to walk page tables for

workloads with weak memory access locality in comparison

to native system.

To reduce page walk cache misses and the number of

memory references incurred by two-dimensional page walk,

our main idea is to store the guest page table data on the host

huge page, such that the steps to walk two-dimensional page

tables and the page walk cache misses can be reduced. Since

guest page tables are stored on host huge pages, to obtain

the GPA of the guest page table entry, it only needs to walk

the 3-level host page table, improving the page walk cache

capability and shortening the 24 memory references in the

two dimensional page walk to 20 memory references in the

worst case, as shown in Figure 1 (b).

Intuitively, guest OS accesses application’s whole working

set and has worse locality compared to host OS that only

accesses the page table of the application. Therefore, rows gL4

and gL3 of the guest page table may be cached, as shown

in Figure 1; and columns nL4, nL3, and nL2 of the host

page table may be cached. This is also corroborated by the

previous work [38]. We shaded the cached page table entries

in Figure 1.

Empirically, we profile the average memory references in the

two dimensional page walk. We first get the total memory ref-

erences by collecting the last level cache misses (total ref ).

Then, we calculate the memory references of accessing appli-

cation data by using total working set size divided by page

size (data ref = total working set size/4KB). Next, we

remove memory references incurred by accessing application

data from the total memory references and get the total mem-

ory references incurred by page walks (total ref−data ref ).

Finally, we use total memory references incurred by page

walks divided by the total number of page walks and get the

memory references of each page walk (per pw mem ref =
(total ref −data ref)/num of pw). The test results show

that each page walk incurs about 5 memory references, which

are consistent with the memory references that are not shaded

in Figure 1.

With HUGEGPT, translating the GPA of the GVA to the

final HPA (Step 21-24 in Figure 1) still needs to walk the 4-

level host page table as shown in the last row of Figure 1. This

is because user application data is still stored on base pages

(4KB pages) to avoid the adverse effects caused by transparent

huge pages [48]–[51]. Since the size of the guest page table

data is much smaller than user application data size (around

200MB page table data for 100GB user application data), the

adverse effects of using huge pages are negligible.

Figures 2 and 3 confirm the effectiveness of the proposed

approach, i.e., HUGEGPT. Compared to vanilla Linux/KVM,

HUGEGPT offers up to 96% more throughput and 50%

lower average page walk latency. HUGEGPT provides more

performance improvement for workload with weak memory

access locality than it for the workload with no memory access

locality. This is because it is easier to cache root page table

entries (e.g., nL4, nL3, gL4, and gL3 as shown in Figure 1
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Fig. 4: HUGEGPT system overview. Key components are shaded in
orange.

(a)) for weak memory access locality workload compared

to no memory access locality workload, such that removing

the leaf page table entries can bring more benefits. However,

in the random memory access (no memory access locality),

upper-level page table entries may be poorly cached, so the

effectiveness of removing the leaf page table entries is reduced.

To realize the proposed approach, there are two main

technical challenges. To form host huge pages for storing guest

page table data, it needs to form host huge pages based on the

huge page sized guest physical memory regions that are used

to store guest page table data. The first technical challenge

is how to filter out guest page table data and store it on

specific guest physical memory regions. Memory allocations

of page table pages are mixed with other memory allocation

requests. Since we need to store guest page table pages on

host huge pages, we have to filter out memory allocations of

guest page table pages. The second technical challenge is how

to identify the guest physical memory regions that store guest

page table data at the host level. Due to the semantic gap

between the guest and the host, it is challenging to obtain the

guest information in the host.

IV. System Overview
This section gives a system overview of HUGEGPT. and

explain how HUGEGPT works in two phases.

Figure 4 shows the system architecture of HUGEGPT.

HUGEGPT includes three key components that are shaded in

orange. Page table allocation filter is used to filter out memory

allocations of page table pages. Page table memory allocator

is used to allocate page table pages onto the assigned huge

page sized guest physical memory regions. This is to ensure

guest page table can be stored on host huge pages. Huge pages

requester forms huge pages for the designated huge page sized

guest physical memory regions, such that the guest page table

pages on these huge page sized guest physical memory regions

can be backed by the host huge pages.

HUGEGPT works in two phases. In the first phase, a host

huge page is created upon the first page fault that is requested

from the memory allocation of guest page table page. The

memory allocations mixed with user application data pages,
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page table pages, and others are generated ( 1 ). Memory

allocation requests of page table pages are filtered out by the

page table allocation filter ( 2 ). To allocate guest physical

pages to store guest page tables, the page table allocation

requests are sent to the page table memory allocator ( 3 ).

Then, page table memory allocator issues the page fault with

a reserved huge page sized guest memory region which was

assigned by the default guest memory allocator beforehand

( 4 and 5 ). At last, the huge pages requester sends madvise
request with MADV HUGEPAGE command to the default host

memory allocator to form a host huge page based on the

reserved huge page sized guest physical memory region ( 6 ).

When madvise is called with MADV HUGEPAGE command,

the system will directly allocate huge pages if the guest

physical memory region is aligned to huge pages.

In the second phase, as the huge page sized guest physical

memory region has been backed by the host huge page, the

following memory allocations of guest page table pages will be

stored on this reserved huge page sized guest physical memory

region. Specifically, page table memory allocator will not issue

page fault request to the host OS if the reserved huge page

sized guest physical memory region is not used up ( 4 ). As a

side effect, the VM exits caused by page faults are minimized.

V. Design Details
This section first introduces the initialization of HUGEGPT

upon the system starts. Then, it explains how guest page table

memory allocator and guest page table allocation filter work.

At last, it presents how host huge pages are created based on

the huge page sized guest physical memory regions.

A. System Initialization

The goal of the initialization is to setup HUGEGPT before

it is used. The initialization is conducted immediately after the

system starts. In the initialization, HUGEGPT guest page ta-

ble memory allocator first pre-allocates several (configurable)

huge page sized memory regions from the default guest

memory allocator. These reserved guest physical memory

regions are used to store guest page table data of applications

running in virtual machines. Please note that the size of the

reserved guest physical memory regions is small as 100GB

application data only needs around 200MB page table data.

Then, HUGEGPT guest page table memory allocator notifies

the guest physical addresses of these pre-allocated guest

physical memory regions to HUGEGPT huge pages requester

in the host level. Since the notification is not frequent, the

communication overhead between the guest and the host is

small (confirmed in §VI-E). This makes the host know of

the guest physical locations of these huge page sized guest

physical memory regions that are used to store guest page

table data, such that the host can later form huge pages based

on these huge page sized guest physical memory regions.

B. Guest Page Table Allocation

Guest page table allocation in HUGEGPT is designed to

filter out guest page table data and allocate guest page table

pages on the pre-allocated huge page sized guest physical

memory regions. To achieve the goal, we modified kernel

functions for allocating and freeing page table pages in the

guest OS (i.e., pte_alloc_one and free_pmds), such

that they will pass the page allocation and free requests to

HUGEGPT page table memory allocator. This will not only

filter out page allocations for page table data but also store

page table data on reserved huge page sized guest physical

memory regions. Since page table pages are allocated and

freed with dedicated kernel functions, our approach can make

sure that the HUGEGPT page table memory allocator is only

used to manage page table data. Upon the allocation requests

for page table pages, HUGEGPT page table memory allocator

returns free pages from the memory pool of the pre-allocated

huge page sized guest physical memory regions. After the page

table pages are allocated, the page table entries are updated.

This may trigger the first page fault on the huge page sized

guest physical memory region that stores the page table pages.

Upon the first page fault on the huge page sized guest physical

memory region, the host is notified to allocate the host physical

frame to back the huge page sized guest physical memory

region. When page table pages are freed, they are returned to

the HUGEGPT guest physical memory pool.

C. Host Huge Pages Allocation

HUGEGPT’s host huge pages allocation is designed to

create host huge pages based on the reserved huge page

sized guest physical memory regions that are used to store

guest page table data. After HUGEGPT initialization, host

huge page allocation component records the reserved guest

physical locations of the huge page sized guest physical

memory regions. Upon the first page fault of each huge page

sized guest physical memory region, host huge page allocation

component allocates huge page sized host physical memory

region to back huge page sized guest physical memory region,

such that host huge pages are formed. HUGEGPT realizes

it through leveraging the madvise mechanisms. Specifically,

using MADV HUGEPAGE command in madvise can form

huge pages with designated guest physical addresses. This can

minimize the modifications to both the guest and the host OS.

HUGEGPT re-executes the initialization process once the

memory pool of pre-allocated huge page sized guest physical

memory regions are run out of space. In addition, when

HUGEGPT fails to allocate host huge pages (e.g., severe mem-

ory fragmentation), HUGEGPT host huge pages allocation will

fallback to allocate 4KB base pages, in order to make systems

run correctly.

VI. Evaluation
We have implemented HUGEGPT prototype based on

Linux/KVM 5.15. We added and changed around 640 lines

of source code mainly in the page table allocation of the

kernel memory management subsystem. We added a new

kernel file (arch/x86/mm/hugegpt-guest.c) to imple-

ment the guest memory allocator (around 560 lines of source

code). For the host huge pages requester, we added around
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Workload
Name Workload Description Working

Set Size
Sphinx Speech recognition like Apple Siri [52]. 30GB

Moses Real time translation like Google translate [53]. 25GB

Masstree In memory K/V store (50% GET, 50% SET) [54]. 25GB

Specjbb Industry-standard JAVA middleware benchmark [55]. 60GB

Shore Transactional database with TPCC [56]. 30GB

Redis Serve requests (random keys,50% SET,50% GET) [57]. 155GB

MemcachedServe requests (random keys,50% SET,50% GET) [58]. 95GB

Canneal Chip design optimizer [59]. 62GB

Graph500 Graph analysis. 123GB

GUPS Giga Updates Per Second benchmark [60]. 128GB

XSBench Monte Carlo neutron transport compute kernel [61]. 84GB

BTree Index lookup benchmark [4]. 125GB

TABLE II: Programs and workloads used to test HUGEGPT.

80 lines of code in arch/x86/kvm/x86.c to realize it.

HUGEGPT works at the VM/process granularity. The Page

Table Allocation Filter of HUGEGPT is used to identify dif-

ferent VMs/processes and decides whether HUGEGPT should

be enabled on each of them.

We have evaluated HUGEGPT extensively with a diverse

set of workloads and compared HUGEGPT to native systems

(without virtualization), vanilla Linux/KVM, Linux transpar-

ent huge page (Linux THP [32]) and Gemini [46]. The objec-

tive of the evaluation is four-fold: 1) to show that HUGEGPT

can improve throughput for throughput-oriented workloads

compared to vanilla Linux/KVM (§VI-B), 2) to show that

HUGEGPT can reduce mean and tail latency of latency-

sensitive workloads compared to vanilla Linux/KVM (§VI-C),

3) to compare HUGEGPT with related systems (§VI-D), and 4)

to evaluate applicability and overhead of HUGEGPT (§VI-E).

A. Experiment Settings

Our evaluation was conducted on a Hewlett Packard En-

terprise (HPE) ProLiant DL580 Gen10 server with four Intel

Xeon Gold 6138 processors, 256GB memory, and two 2TB

SSDs. Each processor has 20 cores. With Linux QEMU/KVM,

we built virtual machines (VMs), each VM with 40 virtual

CPUs (vCPUs) and 240GB memory. We set the number of

application threads equal to the number of vCPUs. Both host

OS and guest OS are Ubuntu Linux 20.04 with Linux kernel

5.15. We test HUGEGPT with a large and diverse set of

workloads generated by typical applications from different

domains (e.g., database server, key/value store, AI workload,

scientific applications, etc.), as summarized in Table II. We

profile these workloads using the Linux Perf tool to read

performance hardware counters. It shows that these workloads

all spend a significant part of execution time (>20%) on page

walks. Hence, these workloads are with weak memory access

locality. Two workloads (i.e., Swaptions and Raytrace) are

not TLB sensitive and page walk intensive. They are used to

test the overhead of HUGEGPT. In the experiments, each VM

encapsulates one workload.

We categorize the benchmarks into two types: throughput-

oriented benchmarks (e.g., GUPS, XSBench, and BTree)

and latency critical benchmarks (e.g., Sphinx, Moses, and

Masstree). We first measure the throughputs of throughput-
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Fig. 5: Throughputs of throughput-oriented workloads. Throughputs are
normalized to vanilla Linux/KVM.
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Fig. 6: Average page walk latencies of throughput-oriented workloads.
Average page walk latencies are normalized to vanilla Linux/KVM.

oriented workloads reported by these workloads. Then, we

collect average and tail latencies reported by the latency sensi-

tive workloads. Some workloads (e.g., Redis and Memcached

workloads in YCSB [62]) report both throughputs and la-

tencies, so we present both of them in the test results. The

performance measurements may vary significantly across dif-

ferent workloads. When we present them in figures, for clarity,

we normalize them against those of vanilla Linux/KVM, as

indicated in the figures.

B. Experiments with Throughput Oriented Workloads

Figure 5 shows the throughputs of throughput-oriented

workloads when three systems (i.e., native system, HUGEGPT,

and vanilla Linux/KVM) are tested with these workloads. On

average, HUGEGPT offers 10% more throughput compared to

vanilla Linux/KVM. With HUGEGPT, page walker does not

need to walk the leaf page table entries of the nested page table

while walking the two dimensional page tables, so HUGEGPT

reduces the page walk cache misses and performs better than

vanilla Linux/KVM. For the average throughput, native system

outperforms HUGEGPT by 68%. This is because TLB and

page walk caches may cache most page table entries in the

native system.

To further understand why HUGEGPT’s throughput is better

than vanilla Linux/KVM and worse than native system, we

profile the average page walk latency when the workload is

tested in different systems. We show the results in Figure 6.

As we expected, HUGEGPT reduces the average page walk

latency by 12% compared to vanilla Linux/KVM and increases

the average page walk latency by 92% compared to native
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Fig. 7: Average latencies of latency sensitive workloads. Average latencies
are normalized to vanilla Linux/KVM.

system on average. This confirms HUGEGPT’s effectiveness

on improving application throughput by reducing the overhead

of two dimensional page walks in vanilla Linux/KVM.

Figure 5 also shows that HUGEGPT increases the through-

put by the largest percentage (16%) for the Memcached

workload and the smallest percentage (5%) for the BTree and

GUPS workloads. For the Memcached workload, it strides the

memory with weak memory access locality so more page table

entries may be cached by TLB and page walk caches compared

to random memory accesses. Therefore, reducing the leaf page

table entries of the nested page table in HUGEGPT shows

more performance improvement. This is consistent with the

performance observation in §II-B. Since GUPS and BTree

workloads conduct randomly memory accesses, HUGEGPT’s

performance improvement on these workloads is less. For

instance, GUPS is calculated by identifying the number of

memory locations that can be randomly updated in one second,

so it shows almost no memory access locality such that it may

be hard to cache lower level page table entries.

C. Experiments with Latency Sensitive Workloads

Figure 7 shows the average latencies of different systems

when they are tested with latency sensitive workloads. On

average, native system shows the lowest average latency as

most page table entries can be cached while walking the one

level page table. In the worst case, native system only incurs

four memory references. Relative to native system, HUGEGPT

increases the average latency by 16% on average. Compared to

vanilla Linux/KVM, HUGEGPT reduces the average latency

by 8% on average. This is because HUGEGPT reduces the

average page walk latency of the two dimensional page walks

by up to about 50% as explained in §II-B. HUGEGPT reduces

page walk cache misses and the number of memory references

in two dimensional page walks from 24 to 20 in the worst case.

To further pinpoint why HUGEGPT increases the average

latency compared to native system and reduces the average la-

tency compared to vanilla Linux/KVM, we profile the average

page walk latency when the latency sensitive workloads are

tested with the three systems. We show the profiling results in

Figure 10. On average, HUGEGPT increases the average page

walk latency by 62% compared to native system and decreases

the average page walk latency by 8% compared to vanilla

Linux/KVM. This is consistent with the average latency results

and also shows HUGEGPT’s effectiveness on reducing the
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Fig. 8: 95th percentile tail latencies of latency sensitive workloads. Tail
latencies are normalized to vanilla Linux/KVM.
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Fig. 9: 99th percentile tail latencies of latency sensitive workloads. Tail
latencies are normalized to vanilla Linux/KVM.
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Fig. 10: Average page walk latencies of latency sensitive workloads.
Average page walk latencies are normalized to vanilla Linux/KVM.

overhead of two dimensional page walks for latency sensitive

workloads in comparison to vanilla Linux/KVM.

Figure 8 and Figure 9 show the 95th percentile tail latencies

and the 99th percentile tail latencies, respectively, when the

latency sensitive workloads are tested with the three systems.

On average, HUGEGPT provides 8% lower 95th percentile

tail latency 8% lower 99th percentile tail latency compared

to vanilla Linux/KVM, and 32% higher 95th percentile tail

latency and 30% higher 99th percentile tail latency relative to

native system. The tail latency test results are consistent with

the average page walk latency of the three systems as shown

in Figure 10.

Figure 7, Figure 8, and Figure 9 also show that HUGEGPT

shows small performance advantage for some workloads (e.g.,

Moses and Masstree) and large performance advantage for

some other workloads (e.g., Specjbb and Sphinx). This is

because Specjbb and Sphinx show weak memory access

locality. HUGEGPT performs better on these workloads as

explained in §II-B. Memory access patterns in Moses and

Masstree workloads are more random than Specjbb and

Sphinx. HUGEGPT does not show good performance with

68



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

GUPS
XSBench

BTree
Redis

Canneal

Memcached

Graph500

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t HugeGPT w/ THP (4-level)

HugeGPT w/ THP (5-level)

Fig. 11: HUGEGPT’s throughput improvement compared to Linux
transparent huge page (THP) [32] when 4-level and 5-level page table
are used respectively. Throughputs are normalized to Linux THP.
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Fig. 12: HUGEGPT’s throughput improvement compared to Gemini [46]
when 4-level and 5-level page table are used respectively. Throughputs
are normalized to Gemini.

workloads with random memory access patterns as lower page

table entries may not be cached.

D. Comparisons with Related Systems

We compare HUGEGPT with Linux transparent huge page

(THP) and Gemini [46] on x86 4-level page table and 5-

level page table, respectively. To support 5-level page table

and compare these systems in a fair manner, we change our

platform to a DELL PowerEdge R750 server with two Intel

Xeon Gold 6346 processors (32 cores, 2046 TLB entries, and

36MiB last level CPU cache), 256GB of DRAM, and 2TB

SSD. With Linux QEMU/KVM, we built the virtual machine

with 32 vCPUs, and 240GB memory. Both host OS and guest

OS are Ubuntu Linux 20.04 with the same Linux 5.10 kernel

and software configuration, unless otherwise indicated.

Figure 11 and Figure 12 compare HUGEGPT’s throughput

with that for Linux transparent huge page (THP) and Gem-

ini [46], respectively, when 4-level page table and 5-level page

table are used. When the 4-level page table is used, HUGEGPT

outperforms THP by up to 6% and Gemini by up to 21%.

When the 5-level page table is used, HUGEGPT offers up to

15% and 20% more throughput, compared to THP and Gemini,

respectively. HUGEGPT shows better performance with the

5-level page table because the 5-level page table incurs more

page walk overhead. This gives HUGEGPT more potential to

obtain benefits. The comparison also confirms that HUGEGPT

can further improve the throughput of workloads with weak

memory access locality after THP or Gemini is used. As

introduced in §II-B, HUGEGPT is complementary to THP and

Gemini, as they mainly target workloads with strong memory

access locality, and HUGEGPT mainly optimizes workloads
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Fig. 13: Throughputs of throughput oriented workloads when they are
colocated on the same server. Throughputs are normalized to vanilla
Linux/KVM.
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Fig. 14: Average latencies of latency sensitive workloads when they are
colocated on the same server. Average latencies are normalized to vanilla
Linux/KVM.

with weak memory access locality.

E. Applicability and Overhead

To evaluate HUGEGPT’s applicability, we colocate two

virtual machines (VMs) on the server and test HUGEGPT’s

performance when multiple VMs are colocated on the same

server. We choose this test scenario as VMs colocation on

the same server is pervasive in clouds. We mainly test three

settings. In the first setting, two throughput oriented applica-

tions running in VMs are colocated on the same server. In the

second setting, two latency sensitive applications running in

VMs are colocated on the same server. In the last setting, six

throughput oriented applications running in VMs are colocated

on the same server.

Figure 13 shows throughputs of throughput-oriented work-

loads when HUGEGPT and vanilla Linux/KVM are tested

under the aforementioned first setting. Under this setting,

HUGEGPT outperforms vanilla Linux/KVM by 12% on aver-

age. This shows HUGEGPT can improve application perfor-

mance by reducing two dimensional page walk overhead when

multiple page walk intensive throughput-oriented applications

are collocated on the same server. These experiments also

show HUGEGPT’s effectiveness on multi-threaded applica-

tions, multiple processors, and multiple VMs consolidated on

the same server.

Figure 14, Figure 15, and Figure 16 show the average

latency, 95th percentile tail latency, and 99th percentile tail la-

tency, respectively, when HUGEGPT and vanilla Linux/KVM

are tested under the second setting. HUGEGPT decreases the

average latency by 11%, the 95th percentile tail latency by

12%, and the 99th percentile tail latency by 9% on average,
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Fig. 15: 95th percentile tail latencies of latency sensitive workloads when
they are colocated on the same server. Tail latencies are normalized to
vanilla Linux/KVM.
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Fig. 16: 99th percentile tail latencies of latency sensitive workloads when
they are colocated on the same server. Tail latencies are normalized to
vanilla Linux/KVM.
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Fig. 17: Throughputs of six throughput oriented workloads colocated on
the same server. We run two copies of each workload. Throughputs are
normalized to vanilla Linux/KVM.
in comparison to vanilla Linux/KVM. This shows HUGEGPT

can reduce average and tail latencies when latency sensitive

workloads are colocated on the same server.

Figure 17 shows HUGEGPT’s throughput when six work-

loads are colocated on the same server. We run two copies

of each workload (Canneal, GUPS, and BTree). Since copies

of the same workload have similar throughput, we plot the

average throughput for the copies of each workload. The VM

running each workload has 12 vCPUs and 40GB memory. The

working set size of each workload is kept around 35GB. This

prevents the total workload working set size from exceeding

the server’s memory capacity. On average, HUGEGPT outper-

forms vanilla Linux/KVM by 13%. This is consistent with the

test results when two workloads are consolidated on the same

server, as shown in Figure 13.

Figure 18 shows HUGEGPT’s throughput for different page

sizes. We run XSBench to test HUGEGPT’s throughput. We

choose 4KB, 2MB, and 1GB memory page sizes because

current x86 CPU only supports those page sizes. As the page
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Fig. 18: HUGEGPT’s throughputs with different memory page sizes.
Throughputs are normalized to vanilla Linux/KVM.
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Fig. 19: HUGEGPT’s overhead. Swaptions and Raytrace are page
walk non-intensive workloads. Throughputs are normalized to vanilla
Linux/KVM.
size increases from 4KB to 1GB, HUGEGPT’s throughput

improvement relative to vanilla Linux/KVM degrades from

15% to 4%. This is because huge pages (e.g., 1GB) can shorten

page table walk. For instance, the page table for 1GB huge

pages does not need the last two levels that are present in page

tables for 4KB pages. As a result, HUGEGPT cannot obtain

more benefits when the page size becomes very large. On the

other hand, 1GB huge pages are not widely used as they incur

large overhead such as memory fragmentation and CPU waste

for defragmentation [6].

To evaluate HUGEGPT’s overhead, we test the performance

of HUGEGPT and vanilla Linux/KVM with two page walk

non-intensive workloads, i.e., Swaptions and Raytrace. We

show the performance results in Figure 19. When the workload

is page walk non-intensive, there is almost no space for

HUGEGPT to improve application performance compared to

vanilla Linux/KVM, and the performance difference between

HUGEGPT and vanilla Linux/KVM shows HUGEGPT’s over-

head. Figure 19 shows that HUGEGPT does not introduce

much performance overhead (3% on average). HUGEGPT may

introduce overhead as it needs to identify guest page table

pages and allocate huge pages in the host OS.

VII. Discussion
Live Migration. HUGEGPT can support live migration and

restore from a snapshot. It needs the destination host OS to

conduct system initialization as described in §V-A.

Memory Consumption. HUGEGPT consumes negligible ex-

tra memory space to store page table data compared to vanilla

Linux/KVM. In our evaluation, for 100GB of application data,

vanilla Linux/KVM needs around 217MB of memory space to

store page table data, and HUGEGPT needs around 221MB.
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In comparison to vanilla Linux/KVM, the extra memory

consumption of HUGEGPT is below 2%.

Memory Fragmentation. HUGEGPT relies on the vanilla

Linux mechanisms for memory defragmentation. To defrag-

ment 200MB of memory (100 2MB pages) in a highly frag-

mented environment, it needs less than 200ms. Memory can be

defragmented when HUGEGPT is in the system initialization

phase or in an asynchronous manner. This can further min-

imize performance interference to application performance,

when memory is heavily fragmented.

VIII. Related Works
Hardware-Assisted Approaches. Prefetched address trans-

lation [1] prefetches page table entries by creating direct

mappings from virtual addresses to corresponding entries. Flat

nested page table [63] leverages the direct mapping idea for

nested page walks. FPT [38], [44] flattens the page table

through merging the adjacent layers of the page table. POM-

TLB [24] uses part of the DRAM space as a very large

level-3 TLB to mitigate address translation overhead. Agile

Paging [18] mitigates two dimensional page walks overhead

by leveraging the nested paging and the shadow paging at the

same time. Gandhi et al. [64] apply direct segment [65] in

virtualized systems; and it requires large contiguous physical

memory space to hold application’s entire dataset. Elastic

cuckoo hashing [19], [42] extends and implements cuckoo

hashing [66] in virtualized environments. CA-paging [45]

mitigates the address translation overhead with software and

hardware codesign. Redundant memory mappings [25] enables

ranges of an arbitrary number of virtually and physically

contiguous pages to increase TLB reach and speedup ad-

dress translation. Midgard [26] proposes a new virtual cache

mechanism that maps virtual memory areas (VMAs) to a

single unified Midgard address space. Since each process

usually has a few frequently used VMAs, Midgard’s TLB

coverage is larger than traditional TLB. TLB coalescing [27]–

[29] increases TLB efficiency by exploiting the contiguity in

virtual-to-physical mappings and merging their TLB entries

into a single entry. Barr et al. [30] study different designs

of MMU caches and conclude that the most effective one

is translation cache (e.g., page walk caches). Hashed page

tables [31], [67] challenge this conclusion and propose to use

the hashing scheme to shorten the page walk latency.

Compared to above approaches, HUGEGPT is designed to

reduce page walk cache misses for workloads with weak

memory access locality. HUGEGPT only needs to slightly

change software and can be easily used in virtualized clouds.

Shadow Paging. Shadow paging [18], [68] is the software

approach to facilitate memory virtualization. It emulates the

guest page table to run the application and the host page table

to run the virtual machine. The page walker walks the shadow

page table (SPT) that merges the address mappings in the

guest page table and the host page table. Any update in the

guest page table (write protected) needs to trap (VM exits)

to the host and update the SPT, in order to keep consistency

between the emulated page tables and the SPT. The overhead

caused by the synchronization is large [69]. Hardware assisted

memory virtualization technology (nested paging) is proposed

to resolve the overhead.

Huge Pages. Many research proposals [3], [6], [13], [15]–[17],

[32] focus on optimizing huge page mechanisms to reduce

address translation overhead. Ingens [32] identifies several

issues in existing Linux huge page mechanisms and addresses

them correspondingly. HawkEye [6] further optimizes Ingens.

Illuminator [13] shows that unmovable pages (e.g., OS kernel

pages) can greatly increase memory fragmentation when huge

pages are used. To address this issue, it proposes to manage

movable, unmovable, and hybrid memory regions separately.

Navarro et al. [3] propose reservation-based huge page man-

agement, huge pages with very large sizes, and a novel

contiguity-aware page replacement algorithm to control mem-

ory fragmentation. Zhu et al. [14] comprehensively analyze

huge page mechanisms and propose Quicksilver to optimize

memory bloat and fragmentation problems. Temeraire [16]

allocates huge pages with different sizes based on appli-

cation memory requests to mitigate memory fragmentation.

Gemini [46] forms well aligned huge pages between guest OS

and host OS to improve TLB efficiency in virtualized clouds.

Existing huge page mechanisms may cause memory frag-

mentation [13]. Since HUGEGPT only stores guest page tables

on host huge pages and the size of guest page tables is very

small (200MB for 100GB application data), the adverse effect

is negligible. Yet, HUGEGPT can work with these approaches

to achieve better performance.

IX. Conclusion and Future Work
This paper presents HUGEGPT, an efficient system solution

to reduce page walk cache misses and the steps to walk the

nested page table in the two dimensional address translation.

HUGEGPT’s main idea is to store guest page table pages on

host huge pages. To realize HUGEGPT, it needs to overcome

several technical challenges, such as filtering out memory allo-

cations of guest page table pages and forming host huge pages

based on huge page sized guest physical memory regions

that store the guest page table data. The evaluation based

on diverse real-world applications shows that HUGEGPT can

efficiently reduce address translation overhead and achieve

better performance compared to vanilla Linux/KVM.

Nested virtualization has been widely used to achieve a vari-

ety of purposes, such as migrating multiple VMs together [70],

supporting legacy applications [71], as well as securing sys-

tems and applications [72], [73]. As future work, we plan to

study how to apply HUGEGPT in nested virtualization and

seek the adoption of HUGEGPT in systems and architectures

utilized in industry.
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